189 resultados para Impacting drop
Resumo:
Cationic ionenes that bear electron-rich 1,5-dialkoxynaphthalene (DAN) units within the alkylene segment were allowed to interact with different types of electron-deficient, acceptor-containing molecules in an effort to realize intercalation-induced folding of the ionenes; the collapse of the chains was expected to occur in such a way that the donor and acceptor units become arranged in an alternating fashion. Several acceptor-bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. This yielded acceptor molecules with different water solubility and allowed the examination of solvophobic effects in the folding process. UV/Vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN-ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge-transfer (CT) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger CT complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger pi-stacking tendency of the former. AFM studies of drop-cast films of different ionene-acceptor combinations revealed that compact folded structures are formed most effectively under conditions in which the strongest CT complex is formed.
Resumo:
A comparative study has been carried out of R-12, 22, 125, 134a, 152a, 218, 245, 500, 502, 507 and 717 as working fluids in a vapour-compression refrigeration system. Two performance parameters were defined, which are expressed in reduced quantities for a corresponding-states comparison of these refrigerants in the temperature range -20 to 50-degrees-C. One is based on the product of temperature drop to pressure penalty ratio and the available volumetric heat of vaporisation at the evaporator; the other considers the effect of isentropic compression in the ideal gas state. It was shown that R-125, 507 and 218 could be better alternatives to R-12 than R-134a. Among these, R-218 has a lower maximum cycle pressure.
Resumo:
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
Resumo:
Computer Vision has seen a resurgence in the parts-based representation for objects over the past few years. The parts are usually annotated beforehand for training. We present an annotation free parts-based representation for the pedestrian using Non-Negative Matrix Factorization (NMF). We show that NMF is able to capture the wide range of pose and clothing of the pedestrians. We use a modified form of NMF i.e. NMF with sparsity constraints on the factored matrices. We also make use of Riemannian distance metric for similarity measurements in NMF space as the basis vectors generated by NMF aren't orthogonal. We show that for 1% drop in accuracy as compared to the Histogram of Oriented Gradients (HOG) representation we can achieve robustness to partial occlusion.
Resumo:
A new method is described for measuring intracellular free calcium concentrations, [(Ca2+)(i)], in the cells of Dictyostelium discoideum transformed with apoaequorin cDNA of the jellyfish, Aequorea victoria. Aequorin, a calcium-specific indicator, was regenerated in vivo from apoaequorin produced in the cells by incubation with coelenterazine. The results showed that [(Ca2+)(i)] in developing cells markedly increases at the aggregation stage and again at the culmination stage after a temporary drop at the migration stage. Except for the vegetative stage, the cells al all stages of development exhibit a sharp transient increase in [(Ca2+)(i)] upon stimulation with a cAMP (50 nM) pulse, high responses being observed at the migration and culmination stages. Separated prestalk cells of migrating slugs contain more than twice as much [(Ca2+)(i)] and show three times as large a response to cAMP stimulation as prespore cells.
Resumo:
An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.
Resumo:
brusive Jet Machining (AJM) or Micro Blast Machining is a non-traditional machining process, wherein material removal is effected by the erosive action of a high velocity jet of a gas, carrying fine-grained abrasive particles, impacting the work surface. The AJM process differs from conventional sand blasting in that the abrasive is much finer and the process parameters and cutting action are carefully controlled. The process is particularly suitable to cut intricate shapes in hard and brittle materials which are sensitive to heat and have a tendency to chip easily. In other words, AJM can handle virtually any hard or brittle material. Already the process has found its ways Into dozens of applications; sometimes replacing conventional alternatives often doing jobs that could not be done in any other way. This paper reviews the current status of this non-conventional machining process and discusses the unique advantages and possible applications.
Resumo:
Phenological observations on tree species in tropical moist forest of Uttara Kannada district (13ℴ55′ to 15ℴ31′ N lat; 74ℴ9′ to 75ℴ10′ E long) during the years 1983–1985 revealed that there exists a strong seasonality for leaf flush, leaf drop and reproduction. Young leaves were produced in the pre-monsoon dry period with a peak in February, followed by the expansion of leaves which was completed in March. Abscission of leaves occurred in the post-monsoon winter period with a peak in December. There were two peaks for flowering (December and March), while fruit ripening had a single peak in May–June, preceding the monsoon rainfall. The duration of maturation of leaves was the shortest, while that of full ripening of fruits was the longest. Mature flowers of evergreen species lasted longer than those of deciduous species; in contrast the phenophase of ripe fruits of deciduous species was longer than that of evergreen species.
Resumo:
Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.
Resumo:
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 A, alpha = 74.30, beta = 76.65, gamma = 86.88 degrees. X-ray diffraction data were collected to a resolution of 2.44 A under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
Resumo:
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 A, alpha = 74.30, beta = 76.65, gamma = 86.88 degrees. X-ray diffraction data were collected to a resolution of 2.44 A under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
Resumo:
Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is, investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
Analysis of precipitation reactions is extremely important in the technology of production of fine particles from the liquid phase. The control of composition and particle size in precipitation processes requires careful analysis of the several reactions that comprise the precipitation system. Since precipitation systems involve several, rapid ionic dissociation reactions among other slower ones, the faster reactions may be assumed to be nearly at equilibrium. However, the elimination of species, and the consequent reduction of the system of equations, is an aspect of analysis fraught with the possibility of subtle errors related to the violation of conservation principles. This paper shows how such errors may be avoided systematically by relying on the methods of linear algebra. Applications are demonstrated by analyzing the reactions leading to the precipitation of calcium carbonate in a stirred tank reactor as well as in a single emulsion drop. Sample calculations show that supersaturation dynamics can assume forms that can lead to subsequent dissolution of particles that have once been precipitated.
Resumo:
Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields. (C) 1995 American Institute of Physics.