189 resultados para Image computation
Resumo:
We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated). (C) 2011 Optical Society of America
Resumo:
We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate
Resumo:
With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.
Resumo:
The purpose of life is to obtain knowledge, use it to live with as much satisfaction as possible, and pass it on with improvements and modifications to the next generation.'' This may sound philosophical, and the interpretation of words may be subjective, yet it is fairly clear that this is what all living organisms--from bacteria to human beings--do in their life time. Indeed, this can be adopted as the information theoretic definition of life. Over billions of years, biological evolution has experimented with a wide range of physical systems for acquiring, processing and communicating information. We are now in a position to make the principles behind these systems mathematically precise, and then extend them as far as laws of physics permit. Therein lies the future of computation, of ourselves, and of life.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
Relation between X-ray scattering intensities, mean square thermal fluctuations and thermodynamic properties. High temperature X-ray diffraction study of liquid Fe-Ni and Fe-Si alloys using reflection and transmission geometries. Calculation of the structure factor as a function of wave vector. Extrapolation to zero wave vector. Calculation of the concentration-concentration correlation function defined by A. B. Bhatia and D. E. Thorton. Computation of thermodynamic quantities of mixing A G, LlH and LlS for the binary alloys. Comparison with direct thermodynamic measurements reported in the literature.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
The concentration and chemical potential of oxygen in liquid Fe--Mn alloys equilibrated with the spinel solution, (Fe, Mn)Al sub 2+2x O sub 4+3x , and alpha -Al sub 2 O sub 3 have been determined at 1873K as a function of manganese concentration. The composition of the spinel phase has been determined using electron probe microanalysis. The results are compared with data reported in the literature. The deoxidation equilibrium has been computed using data on free energy of solution of oxygen in liquid iron, free energies of formation of hercynite and galaxite, and interaction parameters reported in the literature. The activity--composition relationship in spinel solution was derived from a cation distribution model. The model is in excellent agreement with the experimental data on oxygen concentration and potential and the composition of the spinel phase. 23 ref.--AA
Resumo:
We present a technique for irreversible watermarking approach robust to affine transform attacks in camera, biomedical and satellite images stored in the form of monochrome bitmap images. The watermarking approach is based on image normalisation in which both watermark embedding and extraction are carried out with respect to an image normalised to meet a set of predefined moment criteria. The normalisation procedure is invariant to affine transform attacks. The result of watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. Here, direct-sequence code division multiple access approach is used to embed multibit text information in DCT and DWT transform domains. The proposed watermarking schemes are robust against various types of attacks such as Gaussian noise, shearing, scaling, rotation, flipping, affine transform, signal processing and JPEG compression. Performance analysis results are measured using image processing metrics.
Resumo:
This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.