107 resultados para Fuchsian groups, Uniformization, Calabi-Yau manifold, differential equation, mirror symmetry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Splittings of a free group correspond to embedded spheres in the 3-manifold M = # (k) S (2) x S (1). These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in pi (2)(M) can be represented by an embedded sphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten different tRNAGly1 genes from the silk worm, Bombyx mori, have been cloned and characterized. These genes were transcribed in vitro in homologous nuclear extracts from the posterior silk gland (PSG) or nuclear extracts derived from the middle silk gland or ovarian tissues. Although the transcription levels were much higher in the PSG nuclear extracts, the transcriptional efficiency of the individual genes followed a similar pattern in all the extracts. Based on the levels of in vitro transcription, the ten tRNAGly1 genes could be divided into three groups, viz., those which were transcribed at very high levels (e.g., clone pR8), high to medium levels (e.g., pBmil, pBmpl, pBmhl, pBmtl) and low to barely detectable levels (e.g., pBmsl, pBmjl and pBmkl). The coding sequences of all these tRNA genes being identical, the differential transcription suggested that the flanking sequences modulate their transcriptional efficiency. The presence of positive and negative regulatory elements in the 5' flanking regions of these genes was confirmed by transcription competition experiments. A positive element was present in the immediate upstream A + T-rich sequences in all the genes, but no consensus sequences correlating to the transcriptional status could be generated. The presence of negative elements on the other hand was indicated only in some of the genes and therefore may have a role in the differential transcription of these tRNAGly genes in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we study the exact controllability of an abstract model described by the controlled generalized Hammerstein type integral equation $$ x(t) = int_0^t h(t,s)u(s)ds+ int_0^t k(t,s,x)f(s,x(s))ds, quad 0 leq t leq T less than infty, $$ where, the state $x(t)$ lies in a Hilbert space $H$ and control $u(t)$ lies another Hilbert space $V$ for each time $t in I=[0,T]$, $T$ greater than 0. We establish the controllability result under suitable assumptions on $h, k$ and $f$ using the monotone operator theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct for free groups, which are codimension one analogues of geodesic laminations on surfaces. Other analogues that have been constructed by several authors are dimension-one instead of codimension-one. Our main result is that the space of such laminations is compact. This in turn is based on the result that crossing, in the sense of Scott-Swarup, is an open condition. Our construction is based on Hatcher's normal form for spheres in the model manifold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrazinoic acid, the active form of the antitubercular pro-drug Pyrazinamide, is an amphiprotic molecule containing carboxylic acid and pyridine groups and therefore can form both salts and cocrystals with relevant partner molecules. Cocrystallization of pyrazinoic acid with isomeric pyridine carboxamide series resulted in a dimorphic mixed-ionic complex with isonicotinamide and in eutectics with nicotinamide and picolinamide, respectively. It is observed that with alteration of the carboxamide position, steric and electrostatic compatibility issues between molecules of the combination emerge and affect intermolecular interactions and supramolecular growth, thus leading to either cocrystal or eutectic for different pyrazinoic acid-pyridine carboxamide combinations. Intermolecular interaction energy calculations have been performed to understand the role of underlying energetics on the formation of cocrystal/eutectic in different combinations. On the other hand, two molecular salts with piperazine and cytosine and a gallic acid cocrystal of the drug were obtained, and their X-ray crystal structures were also determined in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.