110 resultados para Di-acceptor cyclopropane
Resumo:
Many of the conducting polymers though having good material property are not solution processable. Hence an alternate method of fabrication of film by pulsed laser deposition, was explored in this work. PDTCPA, a donor-acceptor-donor type of polymer having absorption from 900 nm to 300 nm was deposited by both UV and IR laser to understand the effect of deposition parameters on the film quality. It was observed that the laser ablation of PDTCPA doesn't alter its chemical structure hence retaining the chemical integrity of the polymer. Microscopic studies of the ablated film shows that the IR laser ablated films were particulate in nature while UV laser ablated films are deposited as smooth continuous layer. The morphology of the film influences its electrical characteristics as current-voltage characteristic of these films shows that films deposited by UV laser are p rectifying while those by IR laser are more of resistor in nature.
Resumo:
C-di-GMP Bis-(3'-5')-cyclic-dimeric-guanosine monophosphate], a second messenger is involved in intracellular communication in the bacterial species. As a result several multi-cellular behaviors in both Gram-positive and Gram-negative bacteria are directly linked to the intracellular level of c-di-GMP. The cellular concentration of c-di-GMP is maintained by two opposing activities, diguanylate cyclase (DGC) and phosphodiesterase (PDE-A). In Mycobacterium smegmatis, a single bifunctional protein MSDGC-1 is responsible for the cellular concentration of c-di-GMP. A better understanding of the regulation of c-di-GMP at the genetic level is necessary to control the function of above two activities. In this work, we have characterized the promoter element present in msdgc-1 along with the + 1 transcription start site and identified the sigma factors that regulate the transcription of msdgc-1. Interestingly, msdgc-1 utilizes SigA during the initial phase of growth, whereas near the stationary phase SigB containing RNA polymerase takes over the expression of msdgc-1. We report here that the promoter activity of msdgc-1 increases during starvation or depletion of carbon source like glucose or glycerol. When msdgc-1 is deleted, the numbers of viable cells are similar to 10 times higher in the stationary phase in comparison to that of the wild type. We propose here that msdgc-1 is involved in the regulation of cell population density. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A brief overview of our group research activities is given and the concept of donor acceptor is described for the development of conjugated polymers for optoelectronic devices. In particular, a new family of conjugated polymers based on dithienopyrrole has been synthesized to demonstrate the concept of donor-acceptor. The dithienopyrrole was coupled to benzodithiophene via Stille coupling to obtain two low band gap polymers P5a and P5b having -C18H37 and -2-ethylhexyl alkyl chain respectively. Both the polymers exhibit absorption within the solar spectrum with an optical band gap below 2 eV. Atomic force microscopy revealed that both the polymers form smooth film with roughness of 2.4 nm and photoluminescence measurement of polymer/fullerene derivative blend film suggests effective dissociation of exciton.
Resumo:
Single-molecule force spectroscopy has proven to be an efficient tool for the quantitative characterization of flexible foldamers on the single-molecule level in this study. The extent of folding has been estimated quantitatively for the first time to the best of our knowledge, which is crucial for a better understanding of the ``folding-process'' on single-molecule level. Therefore, this study may provide a guidance to regulate folding for realizing rational control over the functions of bulk materials.
Resumo:
Synthesis of amphiphilic, cyclic di- and tetrasaccharides, which incorporate a methylene moiety at the inter-glycosidic bond, is reported. The amphiphilic properties of the new cyclic tetrasaccharide host were identified through assessing the solubilities of guests in aqueous and in organic solvents. The glycosidic bond stability of the cyclic tetrasaccharide under aqueous acidic condition was also verified.
Resumo:
A novel ring contraction/rearrangement sequence leading to functionalized 2,8-oxymethano-bridged di- and triquinane compounds is observed in the reaction of various substituted 1-methyl-4-isopropenyl-6-oxabicylo3.2.1]octan-8-ones with Lewis acids. The reaction is novel and is unprecedented for the synthesis of di- and triquinane frameworks.
Resumo:
A novel ring contraction/rearrangement sequence leading to functionalized 2,8-oxymethano-bridged di- and triquinane compounds is observed in the reaction of various substituted 1-methyl-4-isopropenyl-6-oxabicylo3.2.1]octan-8-ones with Lewis acids. The reaction is novel and is unprecedented for the synthesis of di- and triquinane frameworks.
Resumo:
A novel ring contraction/rearrangement sequence leading to functionalized 2,8-oxymethano-bridged di- and triquinane compounds is observed in the reaction of various substituted 1-methyl-4-isopropenyl-6-oxabicylo3.2.1]octan-8-ones with Lewis acids. The reaction is novel and is unprecedented for the synthesis of di- and triquinane frameworks.
Resumo:
A kinetic study of the hydrolytic stabilities of mono-, di-, and 2-chloro-2-deoxy septanosides, under acid-catalysis, is reported herein. A comparison of mono-and diseptanosides, shows that the glycosidic bond in the disaccharide is more stable than the monosaccharide. Further the glycosidic bond at the reducing end hydrolyzes almost twice as faster than that of the non-reducing end of the disaccharide. 2-Chloro-2-deoxy septanoside is found to be the most stable and its glycosidic bond hydrolysis occurs at elevated temperatures only. The orientation of the exo-cyclic hydroxymethyl group and the inductive effect are suggested to play a role in the rates of hydrolysis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.
Resumo:
Bacteria have evolved to survive the ever-changing environment using intriguing mechanisms of quorum sensing (QS). Very often, QS facilitates formation of biofilm to help bacteria to persist longer and the formation of such biofilms is regulated by c-di-GMP. It is a well-known second messenger also found in mycobacteria. Several methods have been developed to study c-di-GMP signaling pathways in a variety of bacteria. In this review, we have attempted to highlight a connection between c-di-GMP and biofilm formation and QS in mycobacteria and several methods that have helped in better understanding of c-di-GMP signaling. (c) 2014 IUBMB Life, 66(12):823-834, 2014
Resumo:
A charge transfer (CT) mediated two-component, multistimuli responsive supergelation involving a L-histidine-appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene-diimide (Asym-NDI) derivative as an acceptor in a 2: 1 mixture of H2O/MeOH was investigated. Asym-NDI alone self-assembled into pH-responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular di-chroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling ``pearls-on-a-string'' from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.
Resumo:
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p) ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (Delta rel(Msm)) or c-di-GMP synthesis (Delta dcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the Delta rel(Msm) and Delta dcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
In the present work, electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in determining the morphology of the organic material. A thiophene derivative (7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapour pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt% and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spiked-spheres to only spikes is observed. A mechanism describing this transformation is proposed based on electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapour pressure and dielectric constant of the solvents. Through a reasonable control of the crystallite size and morphology along with the proposal of the transformation mechanism, this study elucidates electrospraying as a prospective method for designing architectures in organic electronics.