109 resultados para Dental impression techniques
Resumo:
Dead-time is provided in between the gating signals of the top and bottom semiconductor switches in an inverter leg to prevent the shorting of DC bus. Due to this dead time, there is a significant unwanted change in the output voltage of the inverter. The effect is different for different pulse width modulation (PWM) methodologies. The effect of dead-time on the output fundamental voltage is studied theoretically as well as experimentally for bus-clamping PWM methodologies. Further, experimental observations on the effectiveness of dead-time compensation are presented.
Resumo:
Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.
Resumo:
Structural Health Monitoring (SHM) is an effective extension of NDE to reduce down time and cost of Inspection of structural components. On – line monitoring is an essential part of SHM. Acoustic Emission Techniques have most of the desirable requirements of an effective SHM tool. With the kind of advancement seen in the last couple of decades in the field of electronics, computers and signal processing technologies it can only be more helpful in obtaining better and meaningful quantitative results which can further enhance the potential of AET for the purpose. Advanced Composite materials owing to their specific high performance characteristics are finding a wide range of engineering applications. Testing and Evaluation of this category of materials and SHM of composite structures have been very challenging problems due to the very nature of these materials. Mechanical behaviour of fiber composite materials under different loading conditions is complex and involves different types of failure mechanisms. This is where the potential of AET can be exploited effectively. This paper presents an over view of some relevant studies where AET has been utilised to test, evaluate and monitor health of composite structures.
Resumo:
Advanced bus-clamping pulse width modulation (ABCPWM) techniques are advantageous in terms of line current distortion and inverter switching loss in voltage source inverter-fed applications. However, the PWM waveforms corresponding to these techniques are not amenable to carrier-based generation. The modulation process in ABCPWM methods is analyzed here from a “per-phase” perspective. It is shown that three sets of descendant modulating functions (or modified modulating functions) can be generated from the three-phase sinusoidal signals. Each set of the modified modulating functions can be used to produce the PWM waveform of a given phase in a computationally efficient manner. Theoretical results and experimental investigations on a 5hp motor drive are presented
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.
Resumo:
In this article, we aim at reducing the error rate of the online Tamil symbol recognition system by employing multiple experts to reevaluate certain decisions of the primary support vector machine classifier. Motivated by the relatively high percentage of occurrence of base consonants in the script, a reevaluation technique has been proposed to correct any ambiguities arising in the base consonants. Secondly, a dynamic time-warping method is proposed to automatically extract the discriminative regions for each set of confused characters. Class-specific features derived from these regions aid in reducing the degree of confusion. Thirdly, statistics of specific features are proposed for resolving any confusions in vowel modifiers. The reevaluation approaches are tested on two databases (a) the isolated Tamil symbols in the IWFHR test set, and (b) the symbols segmented from a set of 10,000 Tamil words. The recognition rate of the isolated test symbols of the IWFHR database improves by 1.9 %. For the word database, the incorporation of the reevaluation step improves the symbol recognition rate by 3.5 % (from 88.4 to 91.9 %). This, in turn, boosts the word recognition rate by 11.9 % (from 65.0 to 76.9 %). The reduction in the word error rate has been achieved using a generic approach, without the incorporation of language models.
Resumo:
In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the InxGa1 (-) As-x channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the InxGa1 (-) As-x layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the InxGa1 (-) As-x channel layer was pseudomorphically grown leading to tetragonal strain along the 001] growth direction and that the average indium content (x) in the epilayer is similar to 0.12. We found consistency in the results obtained using various methods of analysis.
Resumo:
Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.
Resumo:
The problem of modelling the transient response of an elastic-perfectly-plastic cantilever beam, carrying an impulsively loaded tip mass, is,often referred to as the Parkes cantilever problem 25]; The permanent deformation of a cantilever struck transversely at its tip, Proc. R. Soc. A., 288, pp. 462). This paradigm for classical modelling of projectile impact on structures is re-visited and updated using the mesh-free method, smoothed particle hydrodynamics (SPH). The purpose of this study is to investigate further the behaviour of cantilever beams subjected to projectile impact at its tip, by considering especially physically real effects such as plastic shearing close to the projectile, shear deformation, and the variation of the shear strain along the length and across the thickness of the beam. Finally, going beyond macroscopic structural plasticity, a strategy to incorporate physical discontinuity (due to crack formation) in SPH discretization is discussed and explored in the context of tip-severance of the cantilever beam. Consequently, the proposed scheme illustrates the potency for a more refined treatment of penetration mechanics, paramount in the exploration of structural response under ballistic loading. The objective is to contribute to formulating a computational modelling framework within which transient dynamic plasticity and even penetration/failure phenomena for a range of materials, structures and impact conditions can be explored ab initio, this being essential for arriving at suitable tools for the design of armour systems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).
Resumo:
The problem addressed in this paper is sound, scalable, demand-driven null-dereference verification for Java programs. Our approach consists conceptually of a base analysis, plus two major extensions for enhanced precision. The base analysis is a dataflow analysis wherein we propagate formulas in the backward direction from a given dereference, and compute a necessary condition at the entry of the program for the dereference to be potentially unsafe. The extensions are motivated by the presence of certain ``difficult'' constructs in real programs, e.g., virtual calls with too many candidate targets, and library method calls, which happen to need excessive analysis time to be analyzed fully. The base analysis is hence configured to skip such a difficult construct when it is encountered by dropping all information that has been tracked so far that could potentially be affected by the construct. Our extensions are essentially more precise ways to account for the effect of these constructs on information that is being tracked, without requiring full analysis of these constructs. The first extension is a novel scheme to transmit formulas along certain kinds of def-use edges, while the second extension is based on using manually constructed backward-direction summary functions of library methods. We have implemented our approach, and applied it on a set of real-life benchmarks. The base analysis is on average able to declare about 84% of dereferences in each benchmark as safe, while the two extensions push this number up to 91%. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.