123 resultados para Delta de Entre Ríos
Resumo:
A novel comparator architecture is proposed for speed operation in low voltage environment. Performance comparison with a conventional regenerative comparator shows a speed-up of 41%. The proposed comparator is embedded in a continuous time sigma-delta ADC so as to reduce the quantizer delay and hence minimizes the excess loop delay problem. A performance enhancement of 1dB in the dynamic range of the ADC is achieved with this new comparator. We have implemented this ADC in a standard single-poly 8-Metal 0.13 mum UMC process. The entire system operates at 1.2 V supply providing a dynamic range of 32 dB consuming 720 muW of power and occupies an area of 0.1 mm2.
Resumo:
Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce(1-x)Ru(x)O(2-delta) (0 <= x <= 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce(0.95)Ru(0.05)O(2-delta) (5% Ru(4+) ion substituted in CeO(2)) showed very high WGS activity in terms of high conversion rate (20.5 mu mol.g(-1).s(-1) at 275 degrees C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO(2) by H(2)O is observed with 100% H(2) selectivity at >= 275 degrees C. In presence of externally fed CO(2) and H(2) also, complete conversion of CO to CO(2) was observed with 100% H(2) selectivity in the temperature range of 305-385 degrees C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru(4+) ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru(4+) ionic state in the Ce(1-x)Ru(x)O(2-delta) catalyst.
Resumo:
Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) and Ce(0.67)Fe(0.33)O(2-delta) have been synthesized by a new low temperature sonochemical method using diethylenetriamine as a complexing agent. Due to the substitution of Fe and Pt ions in CeO(2), lattice oxygen is activated in Ce(0.67)Fe(0.33)O(2-delta) and Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). Hydrogen uptake studies show strong reduction peaks at 125 C in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) against a hydrogen uptake peak at 420 degrees C in Ce(0.67)Fe(0.33)O(2-delta). Fe substituted ceria, Ce(0.67)Fe(0.33)O(2-delta) itself acts as a catalyst for CO oxidation and water gas shift (WGS) reactions at moderate temperatures. The rate of CO conversion in WGS with Pt free Ce(0.65)Fe(0.33)O(2-delta) is 2.8 mu mol g(-1) s(-1) at 450 C and with Pt substituted Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) is 4.05 mu mol g(-1) s(-1) at 275 degrees C. Due to the synergistic interaction of the Pt ion with Ce and Fe ions in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta), the catalyst showed much higher activity for CO oxidation and WGS reactions compared to Ce(0.67)Fe(0.33)O(2-delta). A reverse WGS reaction does not occur over Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). The catalyst also does not deactivate even when operated for a long time. Nearly 100% conversion of CO to CO(2) with 100% H(2) selectivity is observed in WGS reactions even up to 550 degrees C. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.
Resumo:
Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.
Resumo:
The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.
Resumo:
We have synthesized 5-7 nm size, highly crystalline TiO2 which absorbs radiation in the visible region of solar spectrum. The material shows higher photocatalytic activity both in UV and visible region of the solar radiation compared to commercial Degussa P25 TiO2. Transition metal ion substitution for Ti4+ creates mid-gap, states which act as recombination centers for electron-hole induced by photons thus reducing photocatalytic activity. However, Pt, Pd and Cu ion substituted TiO2 are excellent CO oxidation and NO reduction catalysts at temperatures less than 100 degrees C.
Resumo:
Hydrogenperoxide (H2O2) is generated in mitochondria in aerobic cells as a minor product of electron transport, is inhibited selectively by phenolic acids (in animals) or salicylhydroxamate (in plants) and is regulated by hormones and environmental conditions. Failure to detect this activity is due to presence of H2O2-consuming reactions or inhibitors present in the reaction mixture. H2O2 has a role in metabolic regulation and signal transduction reactions. A number of enzymes and cellular activities are modified, mostly by oxidizing the protein-thiol groups, on adding H2O2 in mM concentrations. On complexing with vanadate, also occurring in traces, H2O2 forms diperoxovanadate (DPV), stable at physiological pH and resistant to degradation by catalase. DPV was found to substitute for H2O2 at concentrations orders of magnitude lower, and in presence of catalase, as a substrate for user reaction, horseradish peroxidase (HRP), and in inactivating glyceraldehyde-3-phosphate dehydrogenase. superoxide dismutase (SOD)-sensitive oxidation of NADH was found to operate as peroxovanadate cycle using traces of DPV and decameric vanadate (V-10) and reduces O-2 to peroxide (DPV in presence of free vanadate). This offers a model for respiratory burst. Diperoxovanadate reproduces several actions of H2O2 at low concentrations: enhances protein tyrosine phosphorylation, activates phospholipase D, produces smooth muscle contraction, and accelerates stress induced premature senescence (SIPS) and rounding in fibroblasts. Peroxovanadates can be useful tools in the studies on H2O2 in cellular activities and regulation.
Resumo:
Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional alpha beta T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the ``unconventional'' gamma delta T lymphocytes. We observed that gamma delta T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of gamma delta T cells with (10)panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with (10)panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that gamma delta T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-alpha and IFN-gamma in gamma delta T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human gamma delta T cells. J. Leukoc. Biol. 92: 787-794; 2012.
Resumo:
In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative delta-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative delta-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.
Resumo:
Poorly crystalline porous delta-MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 degrees C and the reaction time of 24 h. The as-synthesized sample and also the sample heated at 300 degrees C have nanopetals morphology with large surface area. On heating at temperatures 400 degrees C, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. Furthermore, the poorly crystalline delta-MnO2 converts into well crystalline alpha-MnO2 phase. The electrochemical lithium intercalation and de-intercalation studies in a non-aqueous electrolyte provide a high discharge specific capacity (275 mAh g(-1)) at a specific current of 40 mA g(-1) for the poorly crystalline delta-MnO2 samples. The rate capability is also high. There is a decrease in capacity on repeated charge-discharge cycling. The specific capacity values of the crystalline alpha-MnO2 samples are considerably less than the values of poorly crystalline delta-MnO2 samples. Thus, the hydrothermal route facilitates preparation of poorly crystalline electrochemically active porous MnO2.
Resumo:
This study aimed to assess soil nutrient status and heavy metal content and their impact on the predominant soil bacterial communities of mangroves of the Mahanadi Delta. Mangrove soil of the Mahanadi Delta is slightly acidic and the levels of soil nutrients such as carbon, nitrogen, phosphorous and potash vary with season and site. The seasonal average concentrations (g/g) of various heavy metals were in the range: 14810-63370 (Fe), 2.8-32.6 (Cu), 13.4-55.7 (Ni), 1.8-7.9 (Cd), 16.6-54.7 (Pb), 24.4-132.5 (Zn) and 13.3-48.2 (Co). Among the different heavy metals analysed, Co, Cu and Cd were above their permissible limits, as prescribed by Indian Standards (Co=17g/g, Cu=30 g/g, Cd=3-6 g/g), indicating pollution in the mangrove soil. A viable plate count revealed the presence of different groups of bacteria in the mangrove soil, i.e. heterotrophs, free-living N-2 fixers, nitrifyers, denitrifyers, phosphate solubilisers, cellulose degraders and sulfur oxidisers. Principal component analysis performed using multivariate statistical methods showed a positive relationship between soil nutrients and microbial load. Whereas metal content such as Cu, Co and Ni showed a negative impact on some of the studied soil bacteria.