301 resultados para Channel selection
Resumo:
We present an interactive map-based technique for designing single-input-single-output compliant mechanisms that meet the requirements of practical applications. Our map juxtaposes user-specifications with the attributes of real compliant mechanisms stored in a database so that not only the practical feasibility of the specifications can be discerned quickly but also modifications can be done interactively to the existing compliant mechanisms. The practical utility of the method presented here exceeds that of shape and size optimizations because it accounts for manufacturing considerations, stress limits, and material selection. The premise for the method is the spring-leverage (SL) model, which characterizes the kinematic and elastostatic behavior of compliant mechanisms with only three SL constants. The user-specifications are met interactively using the beam-based 2D models of compliant mechanisms by changing their attributes such as: (i) overall size in two planar orthogonal directions, separately and together, (ii) uniform resizing of the in-plane widths of all the beam elements, (iii) uniform resizing of the out-of-plane thick-nesses of the beam elements, and (iv) the material. We present a design software program with a graphical user interface for interactive design. A case-study that describes the design procedure in detail is also presented while additional case-studies are posted on a website. DOI:10.1115/1.4001877].
Resumo:
The effects of the two sampling gate positions, and their widths and the integrator response times on the position, height, and shape of the peaks obtained in a double‐channel gated‐integrator‐based deep‐level transient spectroscopy (DLTS) system are evaluated. The best compromise between the sensitivity and the resolution of the DLTS system is shown to be obtained when the ratio of the two sampling gate positions is about 20. An integrator response time of about 100 ms is shown to be suitable for practical values of emission time constants and heating rates generally used.
Resumo:
The unsteady laminar incompressible nonsimilar boundary layer flow over a circular cylinder placed symmetrically inside a channel has been studied when the unsteadiness and nonsimilarity are due to the free stream velocity. The nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference in combination with the quasilinearization technique. It is found that the channel blockage parameter controls the transfer of heat from the cylinder and delays separation. The skin friction and heat transfer are significantly affected by the free stream velocity distributions.
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.
Resumo:
We propose a compact model for small signal non quasi static analysis of long channel symmetric double gate MOSFET The model is based on the EKV formalism and is valid in all regions of operation and thus suitable for RF circuit design Proposed model is verified with professional numerical device simulator and excellent agreement is found well beyond the cut-off frequency
Resumo:
A two-channel boxcar integrator with an analog to digital converter was constructed using integrated circuits wherever convenient. The digital output can be instantaneously displayed or displayed after accumulating many samplings in the totaliser. The totaliser mode provides averaging at the digitiser level and hence the integrator has an infinite holding time. When used in the double boxcar mode the instrument overcomes the problem of any base line instability.
Resumo:
The use of energy harvesting (EH) nodes as cooperative relays is a promising and emerging solution in wireless systems such as wireless sensor networks. It harnesses the spatial diversity of a multi-relay network and addresses the vexing problem of a relay's batteries getting drained in forwarding information to the destination. We consider a cooperative system in which EH nodes volunteer to serve as amplify-and-forward relays whenever they have sufficient energy for transmission. For a general class of stationary and ergodic EH processes, we introduce the notion of energy constrained and energy unconstrained relays and analytically characterize the symbol error rate of the system. Further insight is gained by an asymptotic analysis that considers the cases where the signal-to-noise-ratio or the number of relays is large. Our analysis quantifies how the energy usage at an EH relay and, consequently, its availability for relaying, depends not only on the relay's energy harvesting process, but also on its transmit power setting and the other relays in the system. The optimal static transmit power setting at the EH relays is also determined. Altogether, our results demonstrate how a system that uses EH relays differs in significant ways from one that uses conventional cooperative relays.
Resumo:
Local texture and microstructure was investigated to study the deformation mechanisms during equal channel angular extrusion of a high purity nickel single crystal of initial cube orientation. A detailed texture and microstructure analysis by various diffraction techniques revealed the complexity of the deformation patterns in different locations of the billet. A modeling approach, taking into account slip system activity, was used to interpret the development of this heterogeneous deformation.
Resumo:
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Resumo:
The channel volatiles in cordierites of the Precambrian high-grade metapelites from southern and eastern Karnataka northern Tamil Nadu and southern Kerala were analyzed in an attempt to use them as metamorphic fluid fugacity indicators. Infrared powder absorption spectra, used to characterize the channel volatiles, showed that all the 21 analyzed cordierites have H2O and CO2 as the channel volatiles, indicating the predominantly H2O-CO2 composition of the metamorphic fluids. The H2O fraction in the metamorphic fluid was computed using a published thermodynamic method in conjunction with gravimetrically determined cordierite channel H2O content, available P - T estimates and an appropriate equation of state for the H2O - CO2 fluids. The IR data and these calculated X(H2O) values indicate an overall correlation between the variation in the relative proportion of H2O and CO2 in the fluids and the metamorphic grade. The average computed X(H2O) values are: 0.78 for the amphibolite facies eastern Karnataka pelites, 0.36 for the amphibolite facies southern Karnataka pelites, 0.19 for the southern Karnataka transitional zone rocks and 0.13 for the northern Tamil Nadu granulites. Consistently low X(H2O) values, at about 0.2, were obtained for the orthopyroxene-bearing assemblages.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
A standardized in-house reference extract from the pollen of Parthenium hysterophorus, which is responsible for the high incidence of allergic rhinitis in India, was generated and examined by skin test, radio-allergosorbent test inhibition and isoelectric focusing. Parthenium reference allergen discs and positive reference serum were also generated. These reference reagents could not only be used for the quantitation of Parthenium-specific IgE in the sera of rhinitis patients but also for the evaluation of allergenic activity (relative potency and lot-to-lot variation) of different batches of Parthenium pollen.
Resumo:
Texture development in commercially pure titanium during equal channel angular extrusion (ECAE) through Routes A, Be and C has been studied up to three passes at 400 C. Textures were measured using X-ray diffraction, while the microstructural analyses were performed using electron back-scattered diffraction as well as transmission electron microscopy. Occurrences of dynamic restoration processes (recovery and recrystallization) were clearly noticed at all levels of deformations. Finally, the textures were simulated using a viscoplastic polycrystal self-consistent (VPSC) model. Simulations were performed incorporating basal, prismatic and pyramidal slip systems as well as tensile and compressive twinning. The simulated textures corroborate well with experimental textures in spite of the occurrence of dynamic restoration processes. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.