246 resultados para Cadmium alloys


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and lang110rangAlAl//lang11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets. The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point. The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic 'Al3Mn' structure, but also a new monoclinic phase called 'X' has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts were made to produce directionally solidified, specifically grain aligned Al-6 wt pct Ni eutectic alloy using a laboratory scale ESR unit. For this purpose sand cast alloy electrodes were electroslag remelted under different mold conditions. The grain structure of the ingots obtained from these meltings showed that insulated silica molds gave the best vertical alignment of grains along the length of the ingot. The NiAl3 fibers within the grains tended to fan out and there was only a preferred alignment of fibers along the growth direction under the conditions of our experiments. The ESR parameters most suitable for vertical alignment of eutectic grains have been identified. In some electroslag remelting trials ingots were grown on a seed ingot. This resulted in a fewer vertical grains compared to the case when no seed ingot was used. The sand cast specimen of the eutectic exhibited a maximum tensile strength of around 88.2 MN/m2 (9.0 kg/mm2) whereas conventional ESR using water cooled mold gave strength value of 98.0 MN/m2 (10 kg/mm2). The directionally solidified ESR material showed longitudinal tensile strength as high as 213.7 MN/m2 (21.8 kg/mm2) which could be further increased to 220.6 MN/m2 (22.5 kg/mm2) by using the seed ingot. The average growth rate was varied between 5 to 25 mm/min during electroslag remelting in this study. The flow stresses, tangent modulus and ultimate tensile strength of directionally solidified eutectic increased with increasing growth rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of nondestructive determination of the state-of-charge of nickel-cadmium batteries has been examined experimentally as well as theoretically from the viewpoint of internal impedance. It is shown that the modulus of the impedance is mainly controlled by diffusion at all states of charge. Even so, a prediction of the state of charge is possible if the equivalent series/parallel capacitance or the alternating current phase shift is measured at a sufficiently low a.c. test frequency (5–30 Hz) which also avoids inductive effects. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal cycling on the load-controlled tension-tension fatigue behavior of a Ni-Ti-Fe shape memory alloy (SMA) at room temperature was studied. Considerable strain accumulation was observed to occur in this alloy under both quasi-static and cyclic loading conditions. Though, in all cases, steady-state is reached within the first 50-100 cycles, the accumulated steady-state strain, epsilon(p.ss), is much smaller in thermally cycled alloy. As a result, the fatigue performance of them was found to be significantly enhanced vis-a-vis the as-solutionized alloy. Furthermore, under load-controlled conditions, the fatigue life of Ni-Ti-Fe alloys was found to be exclusively dependent on epsilon(p.ss). Observations made by profilometry and differential scanning calorimetry (DSC) indicate that the 200-500% enhancement in fatigue life of thermally cycled alloy is due to the homogeneous distribution of the accumulated fatigue strain. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of small amounts of B to Ti-6Al-4V alloy reduces the as-cast grain size by an order of magnitude and introduces TiB phase into the microstructure. The effects of these microstructural modifications on both the high cycle fatigue and cyclic stress-strain response were investigated. Experimental results show that B addition markedly enhances the fatigue strength of the alloy; however, the influence of prior-beta grain size was found to be only marginal. The presence of TiB particles in the matrix appears to be beneficial with the addition of 0.55 wt.% B to Ti-6Al-4V enhancing the fatigue strength by more than 50%. Strain-controlled fatigue experiments reveal softening in the cyclic stress-strain response, which increases with the B content in the alloy. Transmission electron microscopy of the fatigued specimens indicates that generation of dislocations during cyclic loading and creation of twins due to strain incompatibility between the matrix and the TiB phase are possible reasons for the observed softening. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of crystallographic texture and the change in the grain size during warm rolling (300 deg K) and their effect on the tensile yield strength at 77 and 300 deg K are studied in 99.9% pure Cd. Both longitudinal and transverse specimens are tested. The yield strength obeys the Hall--Petch relation. The Hall--Petch slope, k, is lower and the intercept sigma o is higher in the warm worked material in comparison with the corresponding values for annealed Cd. The differences are attributed to the change in 1013 < and 0001 textures that are developed during warm rolling.26 refs.--AA