231 resultados para Al-cu Alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solvent dependent and low temperature based Chalcopyrite CuIn1-xAlxS2 (CIAS) nano structures were synthesized by a simple one-pot solvothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and micro-Raman spectroscopy were used to characterize the nanostructures structurally and optically. CIAS hollow spheres were constructed from the nanoplates. Detailed formation mechanism of the hollow spheres was explained. Tentative optical phonon vibrational modes have been discussed. Steady state room temperature IR photodectection have been demonstrated with all the CIAS nanostructures under IR lamp illumination. Photo current was amplified by two orders and one order in case of nano needle like structures and hollow spheres respectively, which was explained based upon the trap assisted space charge. Growth and decay constants lasted for few milli seconds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sulfurization of Cu(In,Al)Se-2 films is carried out in an indigenously made set up at moderately low temperature. The films are sulfurized for different time durations of 15, 30, 45 and 60 min at 150 degrees C. InSe and Cu2S phases occurred in the films during the initial stage of sulfurization along with Cu(In,Al)(Se,S)(2) phase. The compositional analysis shows that the sulfur incorporation is saturated after 30 min. Crystallinity increased with the increase in sulfurization time. The band gap of the Cu(In,Al)Se-2 film increased up to 1.35 eV with the addition of sulfur. Single phase Cu(In,Al)(Se,S)(2) with high crystallinity is obtained after 60 min of sulfurization. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a group of alloys with ultrahigh strength of about 2 GPa at 700 degrees C and exceptional oxidation resistance to 1100 degrees C. These alloys exploit intermetallic phases with stable oxide forming elements that combine to form fine nanometric scale structures through eutectic transformations in ternary systems. The alloys offer engineering tensile plasticity of about 4% at room temperature though both conventional dislocation mechanisms and twinning in the more complex intermetallic constituent, along with slip lengths that are restricted by the interphase boundaries in the eutectics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the evolution of crystallographic texture in three of the most important high strength aluminium alloys, viz., AA2219, AA7075 and AFNOR7020 in the cold rolled and artificially aged condition. Bulk texture results were obtained by plotting pole figures from X-ray diffraction results followed by Orientation Distribution Function (ODF) analysis and micro-textures were measured using EBSD. The results indicate that the deformation texture components Cu, Bs and S, which were also present in the starting materials, strengthen with increase in amount of deformation. On the other hand, recrystallization texture components Goss and Cube weaken. The Bs component is stronger in the deformation texture. This is attributed to the shear banding. In-service applications indicate that the as-processed AFNOR7020 alloy fails more frequently compared to the other high strength Al alloys used in the aerospace industry. Detailed study of deformation texture revealed that strong Brass (Bs) component could be associated to shear banding, which in turn could explain the frequent failures in AFNOR7020 alloy. The alloying elements in this alloy that could possibly influence the stacking fault energy of the material could be accounted for the strong Bs component in the texture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present paper reports a new class of Co based superalloys that has gamma-gamma' microstructure and exhibits much lower density compared to other commercially available Co superalloys including Co-Al-W based alloys. The basic composition is Co-10Al-5Mo (at%) with addition of 2 at% Ta for stabilization of gamma' phase. The gamma-gamma' microstructure evolves through solutionising and aging treatment. Using first principles calculations, we observe that Ta plays a crucial role in stabilizing gamma' phase. By addition of Ta in the basic stoichiometric composition Co-3(Al, Mo), the enthalpy of formation (Delta H-f) of L1(2) structure (gamma' phase) becomes more negative in comparison to DO19 structure. The All of the L12 structure becomes further more negative by the occupancy of Ni and Ti atoms in the lattice suggesting an increase in the stability of the gamma' precipitates. Among large number of alloys studied experimentally, the paper presents results of detailed investigations on Co-10Al-5Mo-2Ta, Co-30Ni-10Al-5Mo-2Ta and Co-30Ni-10Al-5Mo-2Ta-2Ti. To evaluate the role alloying elements, atom probe tomography investigations were carried out to obtain partition coefficients for the constituent elements. The results show strong partitioning of Ni, Al, Ta and Ti in ordered gamma' precipitates. 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cu(In,Al)Se-2 films are grown using single step electrodeposition technique. The film properties are studied by varying the deposition time from 500 to 2000 s. Peaks corresponding to elemental Se and Cu2Se phase started appearing from 1200 s of deposition. The composition is changed significantly after 1500 S. Se concentration increased from 57 to 68% with the increase in the deposition time. The Cu2Se phase is dominant in the films deposited for a duration of 2000 s and the grain size increased from 1.12 to 2.15 mu m in this film. Raman analysis confirmed the presence of Se and Cu2Se phase in C1200. In C1500 and C2000 the spectra showed prominent mode corresponding to Cu2Se. The thickness of the film increased from 0.85 to 2.3 mu m with the increase in the deposition time. All the films showed p-type conductivity and resistivity reduced with increased thickness. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (-104 A degrees C), respectively. We report a relatively smaller depression of melting point ranging up to 5 A degrees C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pin-on-disc machine was used to wear Al-Si alloy pins under dry conditions. Unmodified and modified binary alloys and commercial multi-component alloys were tested. The surfaces of the worn alloys were examined by scanning electron microscopy to identify distinct topographical features to aid elucidation of the mechanisms of wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microstructural and X-ray investigation of Ti-AI-Mo alloys Ti-31 Al-15 Mo, Ti-31 Al-13 Mo, Ti-31Al-9Mo and Ti-35Al-9Mo (containing the Ti3Al, TiAl and β phases) indicates that the existing phase diagram of the ternary system for this composition range published by Ge Dhzhi-Min and Pylaeva is in error above 1473 K. An analysis of phase relations reveals that the error has arisen from their use of the Ti-AI diagram due to Bumps, Kessler and Hansen as a basis for generating the ternary. It is shown that a phase diagram of the ternary, consistent with the experimental results, can be generated using a version of the Ti-AI system due to Margolin. Simple geometric arguments are used to build up a new semi-quantitative description of the Ti-AI-Mo system which can be used as a basis for a detailed investigation of phase equilibria in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seizure resistance of several cast aluminium base alloys has been examined using a standard Hohman Wear Tester. Disks of aluminium base alloys were run against a standard aluminium 12% silicon base alloy. The seizure resistance of the alloys (as measured by the lowest bearing parameter reached before seizure) increased with hardness, yield and tensile strength. In Al-Si-Ni alloys where silicon and nickel have little solid solubility in α-aluminium and Si and Ni Al3 hard phases are formed, the minimum bearing parameter decreased with the parameter V (The product of vol. % of hard phases in the disk and the shoe). Apparently the silicon and NiAl3 particles provided discontinuities in the matrix and reduced the probability (1 − V) of the α-aluminium phase in the disk coming into contact with the α-aluminium phase in the shoe. The copper and magnesium containing Al-Si-Ni alloys with lesser volumes of hard phases exhibit considerably better seizure resistance indicating that a slight increase in the solute content or the hardness of the primary α-phase leads to a considerable increase in seizure resistance. Deformation during wear and seizure leads to fragmentation of the original hard particles into considerably smaller particles uniformly dispersed in the deformed α-aluminium matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.