369 resultados para Aerospace materials
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.
Resumo:
A brief survey of the historical development of a photoelectrochemical solar cell is given. The principle and future of solar chargeable battery is compared with a wet and a dry type photovoltaic cell. A solar chargeable battery, with or without a membrane and with an aqueous solution or with solid-state electrolytes is discussed. A new unique type of configuration “Sharon-Schottky” junction solar cell is described which can be used either as a charger for any secondary batteries or could be used for photoelectrolysis of water. All these configurations and their relative merits are discussed. A review on the various semiconductors and types of solar chargeable batteries is made. Finally, a conclusion is drawn for future direction of research for developing an economically viable photoelectrochemical (PEC) solar cell based on either the principle of a solar charger (to charge a Ni---Cd battery or lead—acid battery) and/or solar chargeable battery with or without without a membrane. Some new innovative ideas for the preparation of materials is discussed. The entire discussion is geared towards answering a relevant question: what has gone wrong to result in the stagnation and failure in commercialization of a PEC based solar cell?
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
C21H22N2045, M r = 398.5, orthorhombic, P212~21, a = 9.799 (1), b = 11.853 (1), c = 17.316(2)/~, V=2011.4A 3, Z=4, Dm=l.320, Dx=1.314Mgm -3, CuKa, A=1.5418A, Iz= 1.63 ram-1, F(000) = 840.0, T = 293 K, R = 0.055 for 1735 significant reflections. In the 1-methylthio-2- nitrovinyl moiety the C--C bond, 1.368 (7)A, is significantly longer than in ethylene, 1.336 (2)/~. The second harmonic generation (SHG) efficiency of this compound is only 0.25 of the urea standard. The correlation between the molecular packing and SHG is discussed.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.
Resumo:
An attempt is made to discuss in brief the current philosophy and trends in quality assurance through nondestructive testing. The techniques currently in use and those being developed for newer and advanced materials such as composites are reviewed. 27 ref.--AA
Resumo:
The electroslag refining technique is one of the modern tools which is capable of imparting superior mechanical and chemical properties to metals and alloys. Refining usually results in the elimination of a number of casting or solidification defects, such as shrinkage porosity, gas porosity, pipe, micro- and macro segregation. Remelting also imparts a directional grain structure apart from refining the size of the inclusions, grains and precipitates. This technique has over the years been used widely and successfully to improve the mechanical and chemical properties of steels and alloy steels which are used in the nuclear, missile, aerospace and marine industries for certain critical applications. But the application of ESR to aluminium and its alloys is only recent. This paper investigates the response of an aluminium alloy (corresponding to the Indian Specification IS: 7670) to ESR. Based on theoretical considerations and microstructural evidence it elucidates how ESR of aluminium alloys differs from that of ferrous alloys. The improvement achieved in mechanical properties of the alloy is correlated with the microstructure.
Resumo:
The nuclear, aerospace, naval and missile industries place emphasis on materials with high structural integrity and reliable performance so as to meet certain stringent requirements in service. Strength is not the only criterion for selection. Properties such as fatigue resistance. impact toughness and fracture toughness are equally important. Electroslag refining (ESR) has been used widely and successfully over the years for improving the fatigue resistance, creep resistance, impact strength and fracture toughness of steels and alloy steels. But application of ESR to aluminium alloys is only a recent endeavour. A high-strength aircraft aluminium alloy IS: 7670 was therefore chosen for studies on the fatigue strength and the impact and fracture toughness. The results indicate that the fatigue resistance is considerably improved after refining and that the impact strength and fracture toughness of the refined alloy are comparable with that of the unrefined alloy.
Resumo:
The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.