142 resultados para Addition chains
Resumo:
The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Michael additions of alpha-substituted nitrophosphonates to various nitroolefins are shown to proceed with high diastereo- and enantioselectivity when catalyzed by a quinine-derived thiourea-tertiary amine bifunctional catalyst and generate alpha,gamma-diaminophosphonic acid precursors with contiguous quaternary and tertiary stereocenters.
Resumo:
Compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations are carried out by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The measurements reveal that GeTe crystals are predominant in alloys up to 0.20 at.% of Se content indicating interstitial occupancy of Se in the Ge vacancies. Raman modes in the GeTe alloys changes to GeSe modes with the addition of Se. Amorphousness in the alloy increases with increase of Se and 0.50 at.% Se alloy forms a homogeneous amorphous phase with a mixture of Ge-Se and Te-Se bonds. Structural changes are explained with the help of bond theory of solids. Crystallization temperature is found to be increasing with increase of Se, which will enable the amorphous stability. For the optimum 0.50 at.% Se alloy, the melting temperature has reduced which will reduce the RESET current requirement for the phase change memory applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Photo-thermal Deflection (PTD) technique is used to investigate the thermal diffusivity (alpha) of Ge17Te83 - xTlx (0 <= x <= 13) glasses as a function of composition. The thermal diffusivity of these glasses is found to lie in the range 0.020 to 0.048 cm(2)/s, which is consistent with the memory type of electrical switching exhibited by these samples. Further, it is found that alpha shows an initial increase with Tl addition, followed by a decrease. The observed composition dependence of thermal diffusivity has been understood on the basis that the thallium atoms are incorporated as a covalent species for lower values of x, increasing the network rigidity; however, they enter as ionic species for higher x values, fragmenting the network. The initial increase in a is due to the increasing network rigidity and the subsequent decrease is because of the fragmentation of the network. Also, there is a strong correlation between the composition dependence of switching voltages observed earlier and the variation with composition of electrical resistivity and thermal diffusivity of Ge17Te83 - xTlx glasses obtained in the present study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The first organocatalytic enantioselective direct vinylogous Michael reaction of α,β-unsaturated γ-butyrolactam to nitroolefins is developed using cinchona alkaloids as the catalysts. Both product enantiomers are accessible with moderate to good enantioselectivity.
Resumo:
The first organocatalytic enantioselective direct vinylogous Michael reaction of alpha,beta-unsaturated gamma-butyrolactam to nitroolefins is developed using cinchona alkaloids as the catalysts. Both product enantiomers are accessible with moderate to good enantioselectivity.
Resumo:
A linkage of rigid bodies under gravity loads can be statically counter-balanced by adding compensating gravity loads. Similarly, gravity loads or spring loads can be counterbalanced by adding springs. In the current literature, among the techniques that add springs, some achieve perfect static balance while others achieve only approximate balance. Further, all of them add auxiliary bodies to the linkage in addition to springs. We present a perfect static balancing technique that adds only springs but not auxiliary bodies, in contrast to the existing techniques. This technique can counter-balance both gravity loads and spring loads. The technique requires that every joint that connects two bodies in the linkage be either a revolute joint or a spherical joint. Apart from this, the linkage can have any number of bodies connected in any manner. In order to achieve perfect balance, this technique requires that all the spring loads have the feature of zero-free-length, as is the case with the existing techniques. This requirement is neither impractical nor restrictive since the feature can be practically incorporated into any normal spring either by modifying the spring or by adding another spring in parallel. DOI: 10.1115/1.4006521]
Resumo:
Competition under control: A practical and efficient direct asymmetric vinylogous Michael reaction of deconjugated butenolides has been developed (see scheme). The products of this reaction, highly functionalized chiral succinimides, are obtained in excellent yield with high diastereoselectivity (up to d.r.=18:1) and outstanding enantioselectivity (up to e.r.=99.5:0.5).
Resumo:
The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The role of Bi layer (thickness similar to 7 nm) on As2S3 film was extensively studied for different optical applications in which Bi (top layer) as active and diffusing layer and As2S3 as barrier (matrix) layer. Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. The decrease of optical band gap with the addition of Bi to As2S3 has been explained on the basis of density of states and the increase in disorder in the system. It was found that the efficient changes of optical parameters (transmission, optical band gap, refraction) could be realized due to the photo induced diffusion activated by the focused 532 nm laser irradiation and formation of different bonds. The diffusion of Bi into As2S3 matrix increases the optical band gap producing photo bleaching effect. The changes were characterised by different experimental techniques. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J(2)) and dimerization (delta). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J(2)-delta plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.
Resumo:
Bulk Se60-xTe40Sbx glasses in the composition range 0 <= x <= 14 were prepared by the melt quenching method. Differential Scanning Calorimetric (DSC) and thermal crystallization studies were performed to understand the thermodynamic property like glass transition and structural transformations. These glasses exhibit sharp endothermic peak at the glass transition (T-g). Disappearance of the endothermic peak at T-g in the rejuvenated samples clearly indicates the ageing effect in these glasses. Addition of Sb to Se-Te increases the connectivity of the structural network which is evidenced from the increase in T-g. A distinct change in the slope of the T-g at x=6, indicates a major change in the way the network is connected. The glass forming ability and the thermal stability also exhibit a maximum at x=6. T-g increases with the ageing time and the corresponding fictive temperature (T-f) calculated from the specific heat curves shows a decreasing trend. The molecular movements along the polymeric Se chains might cause the structural relaxation and the physical ageing. The physical ageing effect has been understood on the basis of the Bond Free Solid Angle (BFSA) model proposed by Kastner. Thermally crystallized samples show the formation of rhombohedral Sb2Te3, rhombohedral Sb2Se3 and hexagonal Te phases.
Resumo:
Aluminum scandium binary alloys represent a promising precipitation-hardening alloy system. However, the hardness of the binary alloys decreases with the rapid coarsening of Al3Sc precipitate during high-temperature aging. In the current study, we report a new approach to compensate for the loss of mechanical properties by combining rapid solidification with very small ternary addition of transition metal Ni. This addition yields dispersion, and at a critical concentration improves the mechanical properties. We explore additions of a maximum of 0.06 at. pct of Nickel to a binary Al-0.14 at. pct Sc alloy, which yield nickel-rich dispersions. We report two kinds of biphasic dispersions containing AlNi2Sc/Al9Ni2 and alpha-Al/Al9Ni2 phase combinations. The maximum improvement in mechanical properties occurs with the addition of 0.045 at. pct Ni with a yield strength of 239 +/- A 7 MPa for an aging treatment at 583 K (310 A degrees C) for 15 hours. DOI: 10.1007/s11661-013-1624-z (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
The paper reports effect of small ternary addition of In on the microstructure, mechanical property and oxidation behaviour of a near eutectic suction cast Nb-19.1 at-%Si-1.5 at-%In alloy. The observed microstructure consists of a combination of two kinds of lamellar structure. They are metal-intermetallic combinations of Nb-ss-beta-Nb5Si3 and Nb-ss-alpha-Nb5Si3 respectively having 40-60 nm lamellar spacings. The alloy gives compressive strength of 3 GPa and engineering strain of similar to 3% at room temperature. The composite structure also exhibits a large improvement in oxidation resistance at high temperature (1000 degrees C).
Resumo:
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.