160 resultados para state-dependent switching law
Resumo:
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Films of (PEG)(x)NH4ClO4 (x = 5 to 1000) were prepared and characterized. The physical properties are observed to be a sensitive function of concentration. Hygroscopicity increases as salt content increases. Conductivity peaks (sigma = 2.7 x 10(-6) S/cm) at x = 46. The H-1 NMR line width has a minimum at x = 46, while that of Cl-35 monotonically increases with salt concentration, indicating that the complex is essentially a protonic conductor.
Resumo:
Considering cement based composites as chemically bonded ceramics (CBC) the consequent strength development with age is essentially a constant volume solidification process, such that the hydrated gel particles fill the space resulting in the compatible gel space ratios. Analysis has been done of the extensively used graphical method of mix design (British method of mix design) i.e., the relation between the compressive strength and the free water - cement ratio. By considering the strength (S) at w/c 0.5 (S-0.5) as the reference state to reflect the synergetic effects between constituents of concrete a generalized relationship obtained is of the form {S/S-0.5} = a + b {1/(w/c)}.
Resumo:
a-Si:H/InSb structures have been fabricated by glow discharge deposition of a-Si on bulk InSb substrates in hydrogen atmosphere. The structure shows interesting switching properties, toggling between a high resistance and a conducting state with OFF to ON resistance ratio of 10(6) at remarkably low threshold voltages of 0.3 V at room temperature. The low threshold voltage for this structure, as compared to the higher switching threshold of about 30 V for other a-Si based structures, has been achieved by the use of InSb as a substrate, capable of high carrier injection. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
We analyze the origin of de-enhancement for a number of vibrational modes in the 2(1)A(g) excited state of trans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 2(1)A(g) <-- 1(1)A(g) transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.
Resumo:
We have studied the temperature dependence of the photoemission spectra of La1-xSrxMnO3 (x=0.0, 0.2, and 0.4) and found that the spectral line shape dramatically changes in the entire valence-band region, particularly for x=0.2 and 0.4. By contrast, the spectra of La0.6Sr0.4CoO3 show no significant temperature dependence. From comparison between the temperature-and composition-(x) dependent spectral changes and the temperature-composition phase diagram of La1-xSrxMnO3, we suggest that the changes are related to the degree of hole localization on oxygen p orbitals, which is influenced by electron-lattice coupling and magnetic correlations.
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
The mechanism of field induced phase switching in antiferroelectric lead zirconate and La-modified lead zirconate thin films has been analysed in terms of reversible and irreversible switching process under weak fields as a function of donor concentration. Extension of Rayleigh law of ferromagnetic materials to the present antiferroelectric and modified antiferroelectric compositions have clearly showed that origin of small signal dielectric permittivity is due to reversible domain wall motion. Rayleigh's constant, a measure of irreversible switching process, exhibited a slight increase with lower La3+ concentrations and followed by a gradual fall for higher concentration. This clearly illustrates that donor addition to antiferroelectric thin films controls the domain switching even under weak fields. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.
Resumo:
We report unipolar resistive switching in ultrathin films of chemically produced graphene (reduced graphene oxide) and multiwalled carbon nanotubes. The two-terminal devices with yield >99% are made at room temperature by forming continuous films of graphene of thickness similar to 20 nm on indium tin oxide coated glass electrode, followed by metal (Au or Al) deposition on the film. These memory devices are nonvolatile, rewritable with ON/OFF ratios up to similar to 10(5) and switching times up to 10 mu s. The devices made of MWNT films are rewritable with ON/OFF ratios up to similar to 400. The resistive switching mechanism is proposed to be nanogap formation and filamentary conduction paths. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The I-V characteristics of bulk As40Te60-xSex and As35Te65-xSex glasses have been studied with a current sweep of 0-18 mA-0, over a wide range of compositions (4 less than or equal to x less than or equal to 22). All the glasses studied showed a threshold electrical switching behaviour. The number of switching cycles withstood by the samples has been found to depend on the ON-state current. It is seen that the switching voltages increase with increase in selenium content. Further, the switching voltages are found to be almost independent of the thickness of the sample (d), in the range 0.18-0.3 mm. Also, the switching voltages and the number of switching cycles withstood by the samples are found to decrease with temperature.