128 resultados para nanometric coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical milling of a stoichiometric mixture of Bi2O3 and V2O5 yielded nanosized powders of bismuth vanadate, Bi2VO5.5 (BN). Structural evolution of the desired BiV phase, through an intermediate product (BiVO4), was monitored by subjecting the powders, ball milled for various durations to X-ray powder diffraction (XRD), differential thermal analysis (DTA), and transmission electron microscopic (TEM) studies. XRD studies indicate that the relative amount of the BiV phase present in the ball-milled mixture increases with increase in milling time and its formation reaches completion within 54 h of milling. Assynthesized powders were found to stabilize in the high-temperature tetragonal (gamma) phase. DTA analyses of the powders milled for various durations suggest that the BN phase-formation temperature decreases with increase in milling time. The nanometric size (30 nm) of the crystallites in the final product was confirmed by TEM and XRD studies. TEM studies clearly demonstrate the growth of BiV on Bi2O3 crystallites. (C) 1999 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have synthesized specimens of nanometric lead dispersion in a glassy Al-Cu-V matrix by rapid solidification of the corresponding melt. The microstructure has been designed to avoid superconducting percolation due to coupling of the neighboring particles by the proximity effect. Using these specimens, we have determined quantitatively the effect of size of the ultrafine lead particles on the superconducting transition. (C) 1999 American Institute of Physics. [S0003-6951(99)02037-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yttrium oxide (Y(2)O(3)) thin films were deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition (MOCVD) process using indigenously developed metal organic precursors Yttrium 2,7,7-trimethyl-3,5-octanedionates, commonly known as Y(tod)(3) which were synthesized by an ultrasound method. A series of thin films were deposited by varying the oxygen flow rate from 1-9 sccm, keeping all other parameters constant. The deposited coatings were characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and roughness for the films were measured by stylus profilometry. Optical properties of the coatings were studied by the spectroscopic ellipsometry. Hardness and elastic modulus of the films were measured by nanoindentation technique. Being that microwave ECR CVD process is operating-pressure-sensitive, optimum oxygen activity is very essential for a fixed flow rate of precursor, in order to get a single phase cubic yttrium oxide in the films. To the best of our knowledge, this is the first effort that describes the use of Y(tod)(3) precursor for deposition of Y(2)O(3) films using plasma assisted CVD process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a systematic study to explore the effect of important process variables on the composition and structure of niobium nitride thin films synthesized by Reactive Pulsed Laser Deposition (RPLD) technique through ablation of high purity niobium target in the presence of low pressure nitrogen gas. Secondary Ion Mass Spectrometry has been used in a unique way to study and fix gas pressure, substrate temperature and laser fluence, in order to obtain optimized conditions for one variable in single experimental run. The x-ray diffraction and electron microscopic characterization have been complemented by proton elastic backscattering spectroscopy and x-ray photoelectron spectroscopy to understand the incorporation of oxygen and associated non-stoichiometry in the metal to nitrogen ratio. The present study demonstrates that RPLD can be used for obtaining thin film architectures using non-equilibrium processing. Finally the optimized NbN thin films were characterized for their hardness using nano-indentation technique and found to be similar to 30 GPa at the deposition pressure of 8 Pa. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article reviews some of the current work on a new class of materials which are nanoscale granular materials. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. Known as nanoembedded materials, nanocomposites or ultrafine granular materials, this class of materials has attracted attention because of the opportunity of basic studies on the effect of size and embedding matrix on transformation behaviors as well as some novel properties, which include structural, magnetic and transport properties. These are in addition to the tremendous interests in what is known as quantum structures(embedded particles size less than 5 nm) for the case of semiconductors, which will not be discussed here. We shall primarily review the work done on metallic systems where the dispersed phases have low melting points and borrow extensively from the work done in our group. The phase transformations of the embedded particles show distinctive behavior and yield new insights. We shall first highlight briefly the strategy of synthesis of these materials by non-equilibrium processing techniques, which will be followed by examples where the effect of length scales on phase transformation behaviors like melting and solidification are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the influence of ductile metal interlayer on the overall deformation behavior of metal/nitride multilayer, different configurations of metal and nitride layers were deposited and tested under indentation loading. To provide insight into the trends in deformation with multilayer spacings, an FEM model with elastic-perfect plastic metal layers alternate with an elastic nitride on top of an elastic-plastic substrate. The strong strain mismatch between the metal and nitride layers significantly alters the stress field under contact loading leading to micro-cracking in the nitride, large tensile stresses immediately below the contact, and a transition from columnar sliding in thin metal films to a more uniform bending and microcracking in thicker coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.