155 resultados para intelligent algorithms
Resumo:
We consider a discrete time queue with finite capacity and i.i.d. and Markov modulated arrivals, Efficient algorithms are developed to calculate the moments and the distributions of the first time to overflow and the regeneration length, Results are extended to the multiserver queue. Some illustrative numerical examples are provided.
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific integrated processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user is using Orthogonal Frequency Division Multiplexing (OFDM). For this we develop cooperative sequential detection algorithms that use the autocorrelation property of cyclic prefix (CP) used in OFDM systems. We study the effect of timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. We also modify the detector to mitigate the effects of these impairments. The performance of the proposed algorithms is studied via simulations. We show that sequential detection can significantly improve the performance over a fixed sample size detector.
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
A fuzzy logic intelligent system is developed for gas-turbine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. These four measurements are also called the cockpit parameters and are typically found in almost all older and newer jet engines. The fuzzy logic system uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. It automates the reasoning process of an experienced powerplant engineer. Tests with simulated data show that the fuzzy system isolates faults with an accuracy of 89% with only the four cockpit measurements. However, if additional pressure and temperature probes between the compressors and before the burner, which are often found in newer jet engines, are considered, the fault isolation accuracy rises to as high as 98%. In addition, the additional sensors are useful in keeping the fault isolation system robust as quality of the measured data deteriorates.
Resumo:
Instruction scheduling with an automaton-based resource conflict model is well-established for normal scheduling. Such models have been generalized to software pipelining in the modulo-scheduling framework. One weakness with existing methods is that a distinct automaton must be constructed for each combination of a reservation table and initiation interval. In this work, we present a different approach to model conflicts. We construct one automaton for each reservation table which acts as a compact encoding of all the conflict automata for this table, which can be recovered for use in modulo-scheduling. The basic premise of the construction is to move away from the Proebsting-Fraser model of conflict automaton to the Muller model of automaton modelling issue sequences. The latter turns out to be useful and efficient in this situation. Having constructed this automaton, we show how to improve the estimate of resource constrained initiation interval. Such a bound is always better than the average-use estimate. We show that our bound is safe: it is always lower than the true initiation interval. This use of the automaton is orthogonal to its use in modulo-scheduling. Once we generate the required information during pre-processing, we can compute the lower bound for a program without any further reference to the automaton.
Resumo:
We have developed two reduced complexity bit-allocation algorithms for MP3/AAC based audio encoding, which can be useful at low bit-rates. One algorithm derives optimum bit-allocation using constrained optimization of weighted noise-to-mask ratio and the second algorithm uses decoupled iterations for distortion control and rate control, with convergence criteria. MUSHRA based evaluation indicated that the new algorithm would be comparable to AAC but requiring only about 1/10 th the complexity.
Resumo:
Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.
Resumo:
We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time
Resumo:
Given an undirected unweighted graph G = (V, E) and an integer k ≥ 1, we consider the problem of computing the edge connectivities of all those (s, t) vertex pairs, whose edge connectivity is at most k. We present an algorithm with expected running time Õ(m + nk3) for this problem, where |V| = n and |E| = m. Our output is a weighted tree T whose nodes are the sets V1, V2,..., V l of a partition of V, with the property that the edge connectivity in G between any two vertices s ε Vi and t ε Vj, for i ≠ j, is equal to the weight of the lightest edge on the path between Vi and Vj in T. Also, two vertices s and t belong to the same Vi for any i if and only if they have an edge connectivity greater than k. Currently, the best algorithm for this problem needs to compute all-pairs min-cuts in an O(nk) edge graph; this takes Õ(m + n5/2kmin{k1/2, n1/6}) time. Our algorithm is much faster for small values of k; in fact, it is faster whenever k is o(n5/6). Our algorithm yields the useful corollary that in Õ(m + nc3) time, where c is the size of the global min-cut, we can compute the edge connectivities of all those pairs of vertices whose edge connectivity is at most αc for some constant α. We also present an Õ(m + n) Monte Carlo algorithm for the approximate version of this problem. This algorithm is applicable to weighted graphs as well. Our algorithm, with some modifications, also solves another problem called the minimum T-cut problem. Given T ⊆ V of even cardinality, we present an Õ(m + nk3) algorithm to compute a minimum cut that splits T into two odd cardinality components, where k is the size of this cut.
Resumo:
We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.