190 resultados para gruppi p-gruppi Sylow p-sottogruppi
Resumo:
Menthofuran (II, 4,5,6,7-tetrahydro-3,6-dimethyl benzofuran), the proximate toxin of R-(+)-pulegone (I), was administered orally to rats (200 mg/kg of body weight/day) for three days and the urinary metabolites were investigated. Among the several metabolites formed, two of them viz. 4-Hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) were indentified. In support of the formation of these metabolites, it has been demonstrated that phenobarbital induced rat liver microsomes readily convert 4-methyl-2-cyclohexenone (V) to 4-hydroxy-4-methyl-2-cyclohexenone (VII) and p-cresol (VIII) in the presence of NADPH and O2. Possible mechanism for the formation of these two metabolites (VII, VIII) from menthofuran (II) has been proposed.
Resumo:
Eulytite compounds, A(3)Bi(XO4)(3) (X = P, A = Ca, Cd, Sr, Pb), belong to the noncentrosymmetric space group l (4) over bar 3d (No. 220) as determined by single-crystal X-ray diffraction studies. The crystals were grown from the melt-cool technique with considerable difficulty as the compounds melt incongruently at their melting temperature, except for the compound Pb3Bi(PO4)(3). The unit cell parameter a is 9.984(5), 9.8611(3), 10.2035(3), and 10.3722(2) angstrom for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), Sr3Bi(PO4)(3), and Pb3Bi(PO4)(3) respectively, and there are four formula units in the unit cell. The structure of Pb3Bi(VO4)(3), a unique eulytite with vanadium substitution, is compared with all these phosphorus substituted eulytites. The A(2+) and Bi3+ cations occupy the special position (16c) while the O anions occupy the general Wyckoff position (48e) in the crystal structure. Only one O position has been identified for Pb3Bi(PO4)(3) and Pb3Bi(VO4)(3), whereas two O atom sites were identified for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), and Sr3Bi(PO4)(3). The UV-vis diffuse reflectance spectra indicate large band gaps for all the phosphate eulytites while a lower band gap is observed for the vanadate eulytite. The feasibility of the use of these compounds in optoelectronic devices has been tested by measuring the second-harmonic generation (SHG) values which have been found to be of a magnitude equivalent to the commercially used KDP (KH2PO4).
Resumo:
Cytochrome P-450 has been purified from phenobarbital-treated rat livers to a specific content of 17 nmol/mg protein. The major species purified has a molecular weight of 48,000. Using the purified antibody for the cytochrome P-450 preparation it has been shown that the major product synthesized in vivo and in the homologous cell-free system in vitro is the 48,000 molecular weight species. Poly(A)-containing RNA isolated from phenobarbital-treated animals codes for the synthesis of the 48,000 molecular weight species in the wheat germ and reticulocyte lysate cell-free systems. It is concluded that cytochrome P-450 synthesis does not involve processing of a polyprotein precursor, although certain minor modifications including glycosylation of the primary translation product are not ruled out. Phenobarbital treatment of the animal results in a significant increase in the cytochrome P-450 messenger activity as measured in the wheat germ cell-free system.
Resumo:
The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
Studies in crystal engineering. Photochemical and crystallographic investigations of bromocoumarins and (±)-7-(p-bromobenzylidene)piperitone
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.
Resumo:
Vapor-liquid equilibrium data have been measured for the binary systems methyl ethyl ketone-p-xylene and chlorobenzene-p-xylene, at 685 mmHg pressure. The activity coefficients have been evaluated taking Into consideration the vapor-phase nonideallty. The f-x-y data have been subjected to a thermodynamic consistency test and the activity coefficients have been correlated by the Wilson equation.
Resumo:
The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]