138 resultados para energized shield wire line
Effects of phase inhomogeneity and boundary conditions on the dynamic response of SMA wire actuators
Resumo:
This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.
Resumo:
An analysis of the pressure variation over an aerofoil with integrated Shape Memory Alloy (SMA) wire is reported. A computational model based on finite elements and potential flow computation is proposed to obtain the deflections of the upper and the lower skins of the aerofoil subjected to aerodynamic pressure and hysteretic deformation of the SMA wire. The computational model couples a one-dimensional phenomenological constitutive model of SMA wire with the laminar incompressible aerodynamic pressure induced deformation of the aerofoil skins. The SMA wires are actuated by thermoelectric control system with auxiliary compensator feeding the piezoelectric stack actuators to adjust the hysteretic dynamics of the SMA wire. At each step of this coupled deformation process, the deflected/morphed shape of the aerofoil is d while recalculating to get the pressure distribution. Panel method based on incompressible and inviscid flow is employed for this purpose. The aerodynamic lift is then obtained from the pressure distributions. Numerical results on the variation of coefficient of pressure are reported.
Resumo:
The paper propose a unified error detection technique, based on stability checking, for on-line detection of delay, crosstalk and transient faults in combinational circuits and SEUs in sequential elements. The proposed method, called modified stability checking (MSC), overcomes the limitations of the earlier stability checking methods. The paper also proposed a novel checker circuit to realize this scheme. The checker is self-checking for a wide set of realistic internal faults including transient faults. Extensive circuit simulations have been done to characterize the checker circuit. A prototype checker circuit for a 1mm2 standard cell array has been implemented in a 0.13mum process.
Resumo:
The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.