4 resultados para energized shield wire line
em CaltechTHESIS
Resumo:
Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar.
Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry.
The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires.
Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.
Resumo:
This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.
Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.
Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.
Resumo:
The purpose of this work is to extend experimental and theoretical understanding of horizontal Bloch line (HBL) motion in magnetic bubble materials. The present theory of HBL motion is reviewed, and then extended to include transient effects in which the internal domain wall structure changes with time. This is accomplished by numerically solving the equations of motion for the internal azimuthal angle ɸ and the wall position q as functions of z, the coordinate perpendicular to the thin-film material, and time. The effects of HBL's on domain wall motion are investigated by comparing results from wall oscillation experiments with those from the theory. In these experiments, a bias field pulse is used to make a step change in equilibrium position of either bubble or stripe domain walls, and the wall response is measured by using transient photography. During the initial response, the dynamic wall structure closely resembles the initial static structure. The wall accelerates to a relatively high velocity (≈20 m/sec), resulting in a short (≈22 nsec ) section of initial rapid motion. An HBL gradually forms near one of the film surfaces as a result of local dynamic properties, and moves along the wall surface toward the film center. The presence of this structure produces low-frequency, triangular-shaped oscillations in which the experimental wall velocity is nearly constant, vs≈ 5-8 m/sec. If the HBL reaches the opposite surface, i.e., if the average internal angle reaches an integer multiple of π, the momentum stored in the HBL is lost, and the wall chirality is reversed. This results in abrupt transitions to overdamped motion and changes in wall chirality, which are observed as a function of bias pulse amplitude. The pulse amplitude at which the nth punch- through occurs just as the wall reaches equilibrium is given within 0.2 0e by Hn = (2vsH'/γ)1/2 • (nπ)1/2 + Hsv), where H' is the effective field gradient from the surrounding domains, and Hsv is a small (less than 0.03 0e), effective drag field. Observations of wall oscillation in the presence of in-plane fields parallel to the wall show that HBL formation is suppressed by fields greater than about 40 0e (≈2πMs), resulting in the high-frequency, sinusoidal oscillations associated with a simple internal wall structure.
Resumo:
Mean velocity profiles were measured in the 5” x 60” wind channel of the turbulence laboratory at the GALCIT, by the use of a hot-wire anemometer. The repeatability of results was established, and the accuracy of the instrumentation estimated. Scatter of experimental results is a little, if any, beyond this limit, although some effects might be expected to arise from variations in atmospheric humidity, no account of this factor having been taken in the present work. Also, slight unsteadiness in flow conditions will be responsible for some scatter.
Irregularities of a hot-wire in close proximity to a solid boundary at low speeds were observed, as have already been found by others.
That Kármán’s logarithmic law holds reasonably well over the main part of a fully developed turbulent flow was checked, the equation u/ut = 6.0 + 6.25 log10 yut/v being obtained, and, as has been previously the case, the experimental points do not quite form one straight line in the region where viscosity effects are small. The values of the constants for this law for the best over-all agreement were determined and compared with those obtained by others.
The range of Reynolds numbers used (based on half-width of channel) was from 20,000 to 60,000.