105 resultados para VESICLE ADSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cationic monomer 2-(methacryloyloxy)ethyl]trimethylammonium chloride was polymerized using N,N'-methylenebisacrylamide as the crosslinker to obtain a cationic superabsorbent polymer (SAP). This SAP was characterized by Fourier transform-infrared spectroscopy, and the equilibrium swelling capacity was determined by swelling in water. The SAP was subjected to cyclic swelling/deswelling in water and NaCl solution. The conductivity of the swelling medium was monitored during the swelling/deswelling and was related to the swelling/deswelling characteristics of the SAP. The adsorption of five anionic dyes of different classes on the SAP was carried out and was found to follow the first-order kinetics. The Langmuir adsorption isotherms were found to fit the equilibrium adsorption data. The dye adsorption capacity of the SAP synthesized in this study was higher than that obtained for other hydrogels reported in the literature. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a high resolution photoemission and electrochemistry study of Se adsorption Au(111) and Ag(111) surfaces performed by immersion of pristine samples into an aqeuous solution of Na2Se are presented. Cyclic voltammetry on Au shows formation of selenium adsorbed species and the structures observed in reductive desorption are to the atomic and polymeric species observed in XPS. In the case of Au(111) XPS spectra in the Se(3d) region indeed show two main features attributed to Se chemisorbed atomically and polymeric Se-8 features.' Smaller structures due to other types of Se conformations were also observed. The Au(4f) peak line, shape does not show core level, shifts: indicative of Au selenide formation the case of silver, XPS spectra for the Ag(3d) show a broadening of the peak and a deconvolution into Ag-B bulk like Ag-Se components shows that the Ag-Se is located at a lower binding energy, an effect similar to oxidation and sulfidation of Ag. The Se(3d) XPS spectrum is found to be substantially different from the Au case and dominated by atomic type Se due to the selenide, though a smaller intensity Se structure at an energy similar to the Se-8 structure for Au is also observed. Changes in the valence band region. related to Se adsorption are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential adsorption of CO and NO as well as equimolar NO + CO reaction with variation of temperature over Pd2+ ion-substituted CeO2 and Ce0.75Sn0.25O2 supports has been studied by DRIFTS technique. The results are compared with 2 at.% Pd/Al2O3 containing Pd-0. Both linear and bridging Pd-0-CO bands are observed over 2 at.% Pd/Al2O3. But, band positions are shifted to higher frequencies in Ce0.98Pd0.02O2-delta and Ce0.73Sn0.25Pd0.02O2-delta catalysts that could be associated with Pd delta+-CO species. In contrast, a Pd2+-CO band at 2160 cm(-1) is observed upon CO adsorption over Ce0.98Pd0.02O2-delta and Ce0.73Sn0.25Pd0.02O2-delta catalysts pre-adsorbed with NO and a Pd+-CO band at 2120 cm(-1) is slowly developed on Ce(0.73)Srl(0.25)Pd(0.02)O(2-delta) over time. An intense linear Pd-0-NO band at 1750 cm(-1) found upon NO exposure to CO pre-adsorbed 2 at.% Pd/Al2O3 indicates molecular adsorption of NO. On the other hand, a weak Pd2+-NO band at 1850 cm(-1) is noticed after NO exposure to Ce0.98Pd0.02O2-delta catalyst pre-adsorbed with CO indicating dissociative adsorption of NO which is crucial for NO reduction. Pd-0-NO band is initially formed over CO pre-adsorbed Ce0.73Sn0.25Pd0.02O2-delta which is red-shifted over time along with formation of Pd2+-NO band. Several intense bands related to nitrates and nitrites are observed after exposure of NO to fresh as well as CO pre-adsorbed Ce0.98Pd0.02O2-delta and Ce0.73Sn0.25Pd0.02O2-delta catalysts. Ramping the temperature in a DRIFTS cell upon NO and CO adsorption shows the formation of N2O and NCO surface species, and N2O-formation temperature is comparable with the reaction done in a reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper presents the first results on the protein adsorption and release kinetics and in vitro biodegradability of cryogenically cured hydroxyapatite-gelatin based micro/macroporous scaffolds (CHAMPS). While the adsorption and release of bovine serum albumin (BSA) protein exhibits steady state behavior over an incubation period of up to 10 days, Fourier transform infrared (FT-IR) analysis importantly confirms the absence of any change in the secondary structure of BSA proteins due to interaction with the CHAMPS scaffold. The compression properties of the CHAMPS scaffold with interconnected porosity (pore size similar to 50-200 mm) is characterized by a non-linear stress-strain response with a strength close to 5 MPa and a maximum strain of up to 24%. The slow but systematic increase in weight loss over a period of 7 days as well as apatite layer formation indicates its good bioactivity. The extensive micro-computed tomography (micro-CT) analysis establishes cancellous bone-like highly interconnected and complex porous architecture of the CHAMPS scaffold. Importantly, the excellent adsorption (up to 50%) and release (up to 60% of adsorbed protein) of BSA has been uniquely attributed to the inherent porous microstructure of the CHAMPS scaffold. Overall, the present study provides an assessment of the interaction of protein with the gelatin-hydroxyapatite macroporous scaffold in vitro, as well as reporting for the first time the efficacy of such scaffolds to release 60% of BSA loaded onto the scaffold in vitro, which is significantly higher than earlier literature reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial surface polymers play a major role in the adhesion of bacterial cells to solid surfaces. Lipopolysaccharides (LPS) are essential constituents of the cell walls of almost all Gram-negative bacteria. This paper reports the results of the investigations on the role of outer membrane exopolymers (LPS) of the chemolithotroph, Acidithiobacillus ferrooxidans, in adsorption of the cells onto pyrite and chalcopyrite. Optimization of EDTA treatment for removal of LPS from cell surface and the surface characterization of EDTA-treated cells are outlined. There was no change in cell morphology or loss in cell motility upon treatment with upto 0.04 mM EDTA for 1 h. Partial removal of LPS by EDTA treatment resulted in reduced adsorption of the cells on both pyrite and chalcopyrite. The protein profile of the EDTA-extractable fraction showed presence of certain outer membrane proteins indicating that EDTA treatment results in temporary gaps in the outer membrane. Also, specificity towards pyrite compared to chalcopyrite that was exhibited by untreated cells was lost when their exopolymer layers were stripped off, which could be attributed to the role of outer membrane proteins in the mineral-specificity exhibited by the bacteria. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental adsorption data of difluoromethane (HFC-32) on activated carbon in powder (ACP) and fiber (ACF) forms over a range of (25 to 75) degrees C and pressures up to 1400 kPa are reported. The data are fitted to Toth and Dubinin-Astakhov isotherm equations. Adsorbed phase volume is derived from the data. Isosteric heats of adsorption are extracted, and their dependence on relative loading and relative pressure is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C/C and C/C n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 Delta pmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-gamma, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).