125 resultados para Two-dimensional model
Transformation of a laterally diverging boundary layer flow to a two-dimensional boundary layer flow
Resumo:
Laterally diverging boundary layer flow over a plate is shown to be reducible to a two-dimensional flow by modelling the diverging streamlines by a source flow.
Resumo:
In this article we have explicitly determined all the 2-dimensional weak pseudomanifolds on 7 vertices. We have proved that there are (up to isomorphism) 13 such weak pseudomanifolds. The geometric carriers of them are 6 topological spaces, three of which are not manifolds.
Resumo:
We report low-frequency 1/f-noise measurements of degenerately doped Si:P delta layers at 4.2 K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead, the interaction of electrons with very few active structural two-level systems may explain the observed noise magnitude.
Resumo:
The least path criterion or least path length in the context of redundant basis vector systems is discussed and a mathematical proof is presented of the uniqueness of indices obtained by applying the least path criterion. Though the method has greater generality, this paper concentrates on the two-dimensional decagonal lattice. The order of redundancy is also discussed; this will help eventually to correlate with other redundant but desirable indexing sets.
Resumo:
Transformations of the layered zinc phosphates of the compositions [C6N4H22](0.5) [Zn-2 (HPO4)(3)], I, [C3N2H12][Zn-2 (HPO4)(3)], II and [C3N2OH12][Zn-2 (HPO4)(3)], III, containing triethylenetetramine, 1,3-diaminopropane, and 1,3-diamino-2-hydroxypropane, respectively, have been investigated under different conditions. On heating in water, I transforms to a one-dimensional (1-D) ladder and a three-dimensional (3-D) structure, while II gives rise to only a two-dimensional (2-D) layered structure. In the transformation reaction of I with zinc acetate, the same ladder and 3-D structures are obtained along with a tubular layer. Under similar conditions II gives a layered structure formed by the joining of two ladder motifs. III, on the other hand, is essentially unreactive when heated with water and zinc acetate, probably because the presence of the hydroxy group in the amine which hydrogen bonds to the framework. In the presence of piperazine, I, II and III give rise to a four-membered, corner-shared linear chain which is likely to be formed via the ladder structure. In addition, 2-D and 3-D structures derived from the 1-D linear chain or ladder structures are also formed. The primary result from the study is that the layers produce 1-D ladders, which then undergo other transformations. It is noteworthy that in the various transformations carried out, most of the products are single-crystalline.
Resumo:
An experimental investigation on reverse transition from turbulent to laminar flow in a two-dimensional channel was carried out. The reverse transition occurred when Reynolds number of an initially turbulent flow was reduced below a certain value by widening the duct in the lateral direction. The experiments were conducted at Reynolds numbers of 625, 865, 980 and 1250 based on half the height of the channel and the average of the mean velocity. At all these Reynolds numbers the initially turbulent mean velocity profiles tend to become parabolic. The longitudinal and vertical velocity fluctuations ($\overline{u^{\prime 2}}$ and $\overline{v^{\prime 2}}$) averaged over the height of the channel decrease exponentially with distance downstream, but $\overline{u^{\prime}v^{\prime}} $ tends to become zero at a reasonably well-defined point. During reverse transition $\overline{u^{\prime}}\overline{v^{\prime}}/\sqrt{\overline{u^{\prime 2}}}\sqrt{\overline{v^{\prime 2}}}$ also decreases as the flow moves downstream and Lissajous figures taken with u’ and v’ signals confirm this trend. There is approximate similarly between $\overline{u^{\prime 2}} $ profiles if the value of $\overline{u^{\prime 2}_{\max}} $ and the distance from the wall at which it occurs are taken as the reference scales. The spectrum of $\overline{u^{\prime 2}} $ is almost similar at all stations and the non-dimensional spectrum is exponential in wave-number. All the turbulent quantities, when plotted in appropriate co-ordinates, indicate that there is a definite critical Reynolds number of 1400±50 for reverse transition.
Resumo:
Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter \[ \Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02, \] where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.
Resumo:
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.
Resumo:
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Resumo:
We investigate the vortex behavior of YBa2Cu3O7−δ thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7−δ. Besides, the “U” exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7−δ/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex–vortex interaction due to the presence of ferromagnetic layers.
Resumo:
The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.
Transport through an electrostatically defined quantum dot lattice in a two-dimensional electron gas
Resumo:
Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I (V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I (V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.