90 resultados para Topology Optimization Method
Resumo:
Clustering has been the most popular method for data exploration. Clustering is partitioning the data set into sub-partitions based on some measures say the distance measure, each partition has its own significant information. There are a number of algorithms explored for this purpose, one such algorithm is the Particle Swarm Optimization(PSO) which is a population based heuristic search technique derived from swarm intelligence. In this paper we present an improved version of the Particle Swarm Optimization where, each feature of the data set is given significance accordingly by adding some random weights, which also minimizes the distortions in the dataset if any. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The experimental results shows that our proposed methodology performs significantly better than the previously performed experiments.
Resumo:
Past studies use deterministic models to evaluate optimal cache configuration or to explore its design space. However, with the increasing number of components present on a chip multiprocessor (CMP), deterministic approaches do not scale well. Hence, we apply probabilistic genetic algorithms (GA) to determine a near-optimal cache configuration for a sixteen tiled CMP. We propose and implement a faster trace based approach to estimate fitness of a chromosome. It shows up-to 218x simulation speedup over the cycle-accurate architectural simulation. Our methodology can be applied to solve other cache optimization problems such as design space exploration of cache and its partitioning among applications/ virtual machines.
Resumo:
Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.
Resumo:
Phase-locked loops (PLLs) are necessary in grid connected systems to obtain information about the frequency, amplitude and phase of the grid voltage. In stationary reference frame control, the unit vectors of PLLs are used for reference generation. It is important that the PLL performance is not affected significantly when grid voltage undergoes amplitude and frequency variations. In this paper, a novel design for the popular single-phase PLL topology, namely the second-order generalized integrator (SOGI) based PLL is proposed which achieves minimum settling time during grid voltage amplitude and frequency variations. The proposed design achieves a settling time of less than 27.7 ms. This design also ensures that the unit vectors generated by this PLL have a steady state THD of less than 1% during frequency variations of the grid voltage. The design of the SOGI-PLL based on the theoretical analysis is validated by experimental results.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
Molecules in their liquid crystalline phase undergo rotational motion about the long axis of the molecule and the shape adopted by the rotating molecule plays an important role in influencing the mesophase morphology. In this context, obtaining the topology and the relative orientation of the different sub-units are important steps. For studying the liquid crystalline phase, C-13 NMR spectroscopy is a convenient method and for certain specifically designed nematogens, 2-dimensional separated local field (2D-SLF) NMR spectroscopy provides a particularly simple and straightforward means of arriving at the molecular topology. We demonstrate this approach on two three ring based nematogens designed with a phenyl or a thiophene ring at one of the termini. From the C-13-H-1 dipolar couplings of the terminal carbon obtained using the 2D-SLF NMR technique, the order parameter of the local symmetry axis of the terminal phenyl ring as well as of the long molecular axis could be easily estimated. For the thiophene nematogen, the lack of symmetry of the thiophene moiety necessitates some additional computational steps. The results indicate that the thiophene unit has its local ordering axis oriented away from the long molecular axis by a small angle, consistent with a bent structure expected in view of the thiophene geometry. The experiment also demonstrates the ability of 2D-SLF NMR to provide high resolution spectra by separation of several overlapped resonances in terms of their C-13-H-1 dipolar couplings. The results are consistent with a rod-like topology of the core of the investigated mesogens. The investigation demonstrates the potential of 2D-SLF NMR C-13 spectroscopy for obtaining atomistic level information and its utility for topological studies of different mesogens.
Resumo:
A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as `coalescence' and `scrambling'. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A discrete vortex method-based model has been proposed for two-dimensional/three-dimensional ground-effect prediction. The model merely requires two-dimensional sectional aerodynamics in free flight. This free-flight data can be obtained either from experiments or a high-fidelity computational fluid dynamics solver. The first step of this two-step model involves a constrained optimization procedure that modifies the vortex distribution on the camber line as obtained from a discrete vortex method to match the free-flight data from experiments/computational fluid dynamics. In the second step, the vortex distribution thus obtained is further modified to account for the presence of the ground plane within a discrete vortex method-based framework. Whereas the predictability of the lift appears as a natural extension, the drag predictability within a potential flow framework is achieved through the introduction of what are referred to as drag panels. The need for the use of the generalized Kutta-Joukowski theorem is emphasized. The extension of the model to three dimensions is by the way of using the numerical lifting-line theory that allows for wing sweep. The model is extensively validated for both two-dimensional and three-dimensional ground-effect studies. The work also demonstrates the ability of the model to predict lift and drag coefficients of a high-lift wing in ground effect to about 2 and 8% accuracy, respectively, as compared to the results obtained using a Reynolds-averaged Navier-Stokes solver involving grids with several million volumes. The model shows a lot of promise in design, particularly during the early phase.
Resumo:
Electromagnetic Interference (EMI) noise is one of the major issues during the design of the grid-tied power converters. Presence of high dv/dt in Common Mode (CM) voltage, excites the parasitic capacitances and causes injection of narrow peaky current to ground. This results in high EMI noise level. A topology consisting of a single phase PWM-rectifier with LCL filter, utilising bipolar PWM method is proposed which reduces the EMI noise level by more than 30dB. This filter topology is shown to be insensitive to the switching delays between the legs of the inverter. The proposed topology eliminates high dv/dt from the dc-bus CM voltage by making it sinusoidal. Hence, the high frequency CM current injection to ground is minimized.
Resumo:
Electromagnetic interference (EMI) noise is one of the major issues during design of grid-tied power converters. A novel LCL filter topology for a single-phase pulsewidth modulation (PWM) rectifier that makes use of bipolar PWM method is proposed for a single-phase to three-phase motor drive power converter. The proposed topology eliminates high dv/dt from the dc-bus common-mode (CM) voltage by making it sinusoidal. Hence, the high-frequency CM current injection to the ground and the motor-side CM current are minimized. The proposed filter configuration makes the system insensitive to circuit non-idealities such as mismatch in inductors values, unequal turn-on and turn-off delays, and dead-time mismatch between the inverter legs. Different variants of the filter topology are compared to establish the effectiveness of the proposed circuit. Experimental results based on the EMI measurement on the grid side and the CM current measurement on the motor side are presented for a 5-kW motor drive. It is shown that the proposed filter topology reduces the EMI noise level by about 35 dB.
Resumo:
This paper proposes a novel decision making framework for optimal transmission switching satisfying the AC feasibility, stability and circuit breaker (CB) reliability requirements needed for practical implementation. The proposed framework can be employed as a corrective tool in day to day operation planning scenarios in response to potential contingencies. The switching options are determined using an efficient heuristic algorithm based on DC optimal power flow, and are presented in a multi-branch tree structure. Then, the AC feasibility and stability checks are conducted and the CB condition monitoring data are employed to perform a CB reliability and line availability assessment. Ultimately, the operator will be offered multiple AC feasible and stable switching options with associated benefits. The operator can use this information, other operating conditions not explicitly considered in the optimization, and his/her own experience to implement the best and most reliable switching action(s). The effectiveness of the proposed approach is validated on the IEEE-118 bus test system. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A lower-bound limit analysis formulation, by using two-dimensional finite elements, the three-dimensional Mohr-Coulomb yield criterion, and nonlinear optimization, has been given to deal with an axisymmetric geomechanics stability problem. The optimization was performed using an interior point method based on the logarithmic barrier function. The yield surface was smoothened (1) by removing the tip singularity at the apex of the pyramid in the meridian plane and (2) by eliminating the stress discontinuities at the corners of the yield hexagon in the pi-plane. The circumferential stress (sigma(theta)) need not be assumed. With the proposed methodology, for a circular footing, the bearing-capacity factors N-c, N-q, and N-gamma for different values of phi have been computed. For phi = 0, the variation of N-c with changes in the factor m, which accounts for a linear increase of cohesion with depth, has been evaluated. Failure patterns for a few cases have also been drawn. The results from the formulation provide a good match with the solutions available from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
Background: Aligning similar molecular structures is an important step in the process of bio-molecular structure and function analysis. Molecular surfaces are simple representations of molecular structure that are easily constructed from various forms of molecular data such as 3D atomic coordinates (PDB) and Electron Microscopy (EM) data. Methods: We present a Multi-Scale Morse-Smale Molecular-Surface Alignment tool, MS3ALIGN, which aligns molecular surfaces based on significant protrusions on the molecular surface. The input is a pair of molecular surfaces represented as triangle meshes. A key advantage of MS3ALIGN is computational efficiency that is achieved because it processes only a few carefully chosen protrusions on the molecular surface. Furthermore, the alignments are partial in nature and therefore allows for inexact surfaces to be aligned. Results: The method is evaluated in four settings. First, we establish performance using known alignments with varying overlap and noise values. Second, we compare the method with SurfComp, an existing surface alignment method. We show that we are able to determine alignments reported by SurfComp, as well as report relevant alignments not found by SurfComp. Third, we validate the ability of MS3ALIGN to determine alignments in the case of structurally dissimilar binding sites. Fourth, we demonstrate the ability of MS3ALIGN to align iso-surfaces derived from cryo-electron microscopy scans. Conclusions: We have presented an algorithm that aligns Molecular Surfaces based on the topology of surface curvature. Awebserver and standalone software implementation of the algorithm available at http://vgl.serc.iisc.ernet. in/ms3align.