245 resultados para Thermodynamic Properties


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermodynamic properties of Mn3O4, Mn2O3 and MnO2 are reassessed based on new measurements and selected data from the literature. Data for these oxides are available in most thermodynamics compilations based on older calorimetric measurements on heat capacity and enthalpy of formation, and high-temperature decomposition studies. The older heat capacity measurements did not extend below 50 K. Recent measurements have extended the low temperature limit to 5 K. A reassessment of thermodynamic data was therefore undertaken, supplemented by new measurements on high temperature heat capacity of Mn3O4 and oxygen chemical potential for the oxidation of MnO1-x, Mn3O4, and Mn2O3 to their respective higher oxides using an advanced version of solid-state electrochemical cell incorporating a buffer electrode. Because of the high accuracy now achievable with solid-state electrochemical cells, phase-equilibrium calorimetry involving the ``third-law'' analysis has emerged as a competing tool to solution and combustion calorimetry for determining the standard enthalpy of formation at 298.15 K. The refined thermodynamic data for the oxides are presented in tabular form at regular intervals of temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using isothermal equilibration, phase relations are established in the system Sm-Rh-O at 1273 K. SmRhO3 with GdFeO3-type perovskite structure is found to be the only ternary phase. Solid-state electrochemical cells, containing calcia-stabilized zirconia as an electrolyte, are used to measure the thermodynamic properties of SmRhO3 formed from their binary component oxides Rh2O3 (ortho) and Sm2O3 (C-type and B-type) in two different temperature ranges. Results suggest that C-type Sm2O3 with cubic structure transforms to B-type Sm2O3 with monoclinic structure at 1110 K. The standard Gibbs energy of transformation is . Standard Gibbs energy of formation of SmRhO3 from binary component oxides Rh2O3 and Sm2O3 with B-type rare earth oxide structure can be expressed as . The decomposition temperature of SmRhO3 estimated from the extrapolation of electrochemical data is 1665 (+/- 2) K in air and 1773 (+/- 3) K in pure oxygen. Temperature-composition diagrams at constant oxygen pressures are constructed for the system Sm-Rh-O. Employing the thermodynamic data for SmRhO3 from emf measurement and auxiliary data for other phases from the literature, oxygen potential-composition phase diagram and 3-D chemical potential diagram for the system Sm-Rh-O at 1273 K are developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To understand Cr emissions from slag melts to a vapor phase, an assessment of the stabilities of the chromium oxides at high temperatures has been carried out. The objective of the present study is to present a set of consistent data corresponding to the thermodynamic properties of the oxides of chromium, with special reference to the emission of hexavalent chromium from slags. In the current work, critical analysis of the experimental data available and a third analysis in the case of Cr2O3 have been carried out. Commercial databases, Fact Sage and ThermoCalc along with NIST-JANAF Thermochemical Tables, have been used for the analysis and comparisons of the results that are presented. The significant discrepancies in the available data have been pointed out. The data from NIST-JANAF Thermochemical Tables have been found to provide a set of consistent data for the various chromium oxides. An Ellingham diagram and the equations for the Delta G degrees (standard Gibbs free energy change) of formation of CrOx have been proposed. The present analysis shows that CrO3(g) is likely to be emitted from slag melts at high oxygen partial pressures. (C) The Minerals, Metals & Materials Society and ASM International 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal-isobaric ensemble Monte Carlo simulation studies of adamantane have been carried out at different temperatures. Thermodynamic properties and radial distribution functions calculated by employing a simple potential model based on sitesite interactions show good agreement with experiment and suggest that the solid is orientationally disordered at high temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of real glasses has been considered to be microheterogeneous, composed of clusters and connective tissue. Particles in the cluster are assumed to be highly correlated in positions. The tissue is considered to have a truly amorphous structure with its particles vibrating in highly anharmonic potentials. Glass transition is recognized as corresponding to the melting of clusters. A simple mathematical model has been developed which accounts for various known features associated with glass transition, such as range of glass transition temperature,T g, variation ofT g with pressure, etc. Expressions for configurational thermodynamic properties and transport properties of glass forming systems are derived from the model. The relevence and limitations of the model are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen bonding in the highly hindered alcohol 2,4-dimethyl-3-ethyl-3-pentanol has been studied by proton n.m.r. and infrared spectroscopy. This alcohol associates to form a dimer but no higher hydrogen bonded species; hence the monomer–dimer equilibrium can be studied without interference from competing processes. Spectral and thermodynamic properties for the hydrogen bonding are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the electrolyte and a mixture of (Mn + MnO) as the reference electrode, standard Gibbs free energy of formation of beta-Ta2O5 has been determined as a function of temperature in the range (1000 to 1300) K. The solid-state electrochemical cell used can be represented as (-)Pt,Ta +Ta2O5//(Y2O3)ThO2//Mn + MnO, Pt(+) Combining the reversible e.m.f. of the cell with recent data on the free energy of formation of MnO, standard Gibbs free energy of formation of Ta2O5 from Ta metal and diatomic oxygen gas (O-2) in the temperature range (1000 to 1300) K is obtained: Delta fG degrees +/- 0.35/(kJ.mol(-1)) = -2004.376 + 0.40445(T/K). Because of the significant solid solubility of oxygen in tantalum, a small correction for the activity of Ta in the metal phase in equilibrium with Ta2O5 is applied. An analysis of the results obtained in this study and other free energy data reported in the literature by the "third law" method suggests the need for refining data for Ta2O5 reported in thermodynamic compilations. Used in the analysis is a revised value for standard entropy of Ta2O5 based on more recent low-temperature heat capacity measurements. An improved set of thermodynamic properties of ditantalum pentoxide (Ta2O5) are presented in the temperature range (298.15 to 2200) K. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The associated model for binary systems has been modified to include volume effects and excess entropy arising from preferential interactions between the associate and the free atoms or between the free atoms. Equations for thermodynamic mixing functions have been derived. An optimization procedure using a modified conjugate gradient method has been used to evaluate the enthalpy and entropy interaction energies, the free energy of dissociation of the complex, its temperature dependance and the size of the associate. An expression for the concentration—concentration structure factor [Scc (0)] has been deduced from the modified associated solution model. The analysis has been applied to the thermodynamic mixing functions of liquid Ga-Te alloys at 1120 K, believed to contain Ga2Te3 associates. It is observed that the modified associated solution model incorporating volume effects and terms for the temperature dependance of interaction energies, describes the thermodynamic properties of Ga-Te system satisfactorily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium-calcium fluoride melt was used to remove phosphorus from the ferro-chrome alloy (64.5 wt% Cr, 0.15 wt% P) during electro slag refining process. The effect of atmosphere and deoxidisers, viz. Al, Fe–Mo and misch metal were also studied during dephosphorisation reaction. The thermodynamic properties of Ca–CaF2 melt is calculated from a known phase diagram and these results are discussed in relation with the dephosphorisation reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental investigations of phase equilibria and thermodynamic properties of the systems M-Pb-O, where M = Ca, Sr or Ba, indicate a regular increase in thermodynamic stability of ternary oxides, MPbO3 and M2PbO4, with increasing basicity of the oxide of the alkaline-earth metal. Number of stable interoxide compounds at 1100 K in the systems M-Pb-O (M = Mg, Ca, Sr, Ba) increases in unit increments from Mg to Ba. In this paper, experimentally determined standard Gibbs energies of formation of M2PbO4 (M = Ca, Sr, Ba) and MPbO3 (M = Sr, Ba) from their component binary monoxides and oxygen gas are combined with an estimated value for CaPbO3 to delineate systematic trends in thermodynamic stability of the ternary oxides. The trends are interpreted using concepts of tolerance factor and acid-base interactions. All the ternary oxides in these systems contain lead in the tetravalent state. The small Pb4+ ions polarize the surrounding oxygen ions and cause the formation of oxyanions which are acidic in character. Hence, the higher oxidation state of lead is stabilized in the presence of basic oxides of alkaline-earth group. A schematic subsolidus temperature-composition phase diagram is presented for the system BaO-PbO-O-2 to illustrate the change in oxidation states in binary and ternary oxides with temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regular associated solution model for binary systems has been modified by incorporating the size of the complex as an explicit variable. The thermodynamic properties of the liquid alloy and the interactions between theA ?B type of complex and the unassociated atoms in anA-B binary have been evaluated as a function of relative size of the complex using the activity coefficients at infinite dilution and activity data at one other composition in the binary. The computational procedure adopted for determining the concentration of clusters and interaction energies in the associated liquid is similar to that proposed by Lele and Rao. The analysis has been applied to the thermodynamic mixing functions of liquid Al-Ca alloys believed to contain Al2Ca associates. It is found that the size of the cluster significantly affects the interaction energies between the complex and the unassociated atoms, while the equilibrium constant and enthalpy change for the association reaction exhibit only minor variation, when the equations are fitted to experimental data. The interaction energy between unassociated free atoms remains virtually unaltered as the size of the complex is varied between extreme values. Accurate data on free energy, enthalpy, and volume of mixing at the same temperature on alloy systems with compound forming tendency would permit a rigorous test of the proposed model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.