184 resultados para TRANSVERSE
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have measured near normal incidence far-infrared (FIR) reflectivity spectra of a single crystal of TbMnO3 from 10 K to 300 K in the spectral range of 50 cm(-1)-700 cm(-1). Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function epsilon(2)(omega) and energy loss function Im(-1/epsilon(omega)), respectively. Some of the observed phonon modes show anomalous softening below the magnetic transition temperature T-N (similar to 46 K). We attribute this anomalous softening to the spin-phonon coupling caused by phonon modulation of the superexchange integral between the Mn3+ spins. The effective charge of oxygen (Z(O)) calculated using the measured LO-TO splitting increases below TN.
The partition of unity finite element method for elastic wave propagation in Reissner-Mindlin plates
Resumo:
This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.
Resumo:
The unsteady mixed convection flow of an incompressible laminar electrically conducting fluid over an impulsively stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field has been investigated. At the same time, the surface temperature is suddenly increased from the surrounding fluid temperature or a constant heat flux is suddenly imposed on the surface. The problem is formulated in such a way that for small time it is governed by Rayleigh type of equation and for large time by Crane type of equation. The non-linear coupled parabolic partial differential equations governing the unsteady mixed convection flow under boundary layer approximations have been solved analytically by using the homotopy analysis method as well as numerically by an implicit finite difference scheme. The local skin friction coefficient and the local Nusselt number are found to decrease rapidly with time in a small time interval and they tend to steady-state values for t* >= 5. They also increase with the buoyancy force and suction, but decrease with injection rate. The local skin friction coefficient increases with the magnetic field, but the local Nusselt number decreases. There is a smooth transition from the unsteady state to the steady state. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The stress concentration that occurs when load is diffused from a constant stress member into thin sheet is an important problem in the design of light weight structures. By using solutions in biharmonic polar-trigonometric series, the stress concentration can be effectively isolated so that highly accurate information necessary for design can be obtained. A method of analysis yielding high accuracy with limited effort is presented for rectangular panels with transverse edges free or supported by inextensional end ribs. Numerical data are given for panels with length twice the width.
Resumo:
The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.
Resumo:
The problem of two-stream instability in plasma is studied by specifying the importance of initial magnetic field associated with the motion of the charged particles and the boundary effects. In Part I the accurate initial steady state is studied when the streams of electrons and ions move with different uniform speeds in plasmas with plane and cylindrical geometry. In Part II, in order to show the effects of finiteness and inhomogeneity of the system, small transverse plasma oscillations are studied in the case of plane plasmas. The role of plasma-sheath oscillations at the boundaries is found to be very important in driving the instabilities associated with the electromagnetic modes. The numerical estimates of the growth rates of the instability are given for the specific case of the physical data in discharge tubes.
Resumo:
An E-plane serpentine folded-waveguide slow-wave structure with ridge loading on one of its broad walls is proposed for broadband traveling-wave tubes (TWTs) and studied using a simple quasi-transverse-electromagnetic analysis for the dispersion and interaction impedance characteristics, including the effects of the beam-hole discontinuity. The results are validated against cold test measurements, an approximate transmission-line parametric analysis, an equivalent circuit analysis, and 3-D electromagnetic modeling using CST Microwave Studio. The effect of the structure parameters on widening the bandwidth of a TWT is also studied.
Resumo:
The plasma is taken to be composed of singly ionized molecules, free electrons and neutral molecules, each of the component being described by the hydromagnetic equations, modified to take into account the displacement current, existence of free charge in the medium, and the modified current equation without involving the scalar conductivity. The basic equations are linearized and only small amplitude waves are considered. In the absence of any external magnetic field, the transverse and longitudinal modes of oscillation separate out. In the transverse part a coupled plasma oscillation occurs which could be propagated only above a certain critical frequency and in the longitudinal part one extraordinary mode of propagation occurs having a forbidden range of frequencies. When there is an external applied magnetic field, ordinary and extraordinary waves are propagated along the direction of the magnetic field, whereas only ordinary waves are propagated transverse to the magnetic field. The critical frequencies above which these waves are propagated are evaluated and, the possible explanation of this medium like behaviour could be the implicit assumption of conductivity being not a scalar.
Resumo:
The Raman spectrum of strontium titanate has been recorded using λ 4358 of mercury as exciter. The observed spectrum consists of 7 Raman lines, one of which is of low frequency, as expected from the recent theory of Cochran. 6 of these Raman lines have been interpreted as the first order spectrum arising from a small deviation of the cubic strontium titanate from its idealized symmetry. It has been shown that one normal mode of SrTiO3 neglected by J.T. Last, will be really active in infrared absorption in the region of 440 cm-1 and that it has to be taken into account in the interpretation of the infrared spectra of titanates. The four vibrational modes of the unit cell of SrTiO3 correspond to frequencies of 90, 335, 441 and 620 cm-1 observed in Raman effect. The large width of the Raman lines and the additional lines at 256 cm-1 and 726 cm-1 have been attributed to a splitting of the longitudinal and transverse optical modes. With the observed frequencies it has been found possible to account for in a satisfactory manner the specific heat of SrTiO3 in the range 54·84° K to 1800° K.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.