508 resultados para TEMPERATURE RANGE 0065-0273K


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work highlights the role of globular microstructure on the workability of A356 aluminum alloy at elevated temperature. The hot deformation behavior was studied by isothermal hot compression tests in the temperature range 573 K to 773 K (300 A degrees C to 500 A degrees C) and strain rate range of 0.001 to 10 s(-1). The flow stress data obtained from the tests were used to estimate the strain rate sensitivity and strain rate hardening. Flow stress analysis of the alloy shows that the effect of temperature on strain hardening is more significant at lower strain levels and strain rate sensitivity is independent of strain. The results also reveal that the flowability of conventionally cast alloy increases after changing the dendritic microstructure into a globular structure through semisolid processing route. Thixocast alloy exhibits lower yield strength and higher elongation at elevated temperature in comparisons to conventionally cast values. This property has an important implication toward thixo-forming at an elevated temperature. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a lot of interest has been centred on the optical properties of hexagonal boron nitride (h-BN), which has a similar lattice structure to graphene. Interestingly, h-BN has a wide bandgap and is biocompatible, so it has potential applications in multiphoton bioimaging, if it can exhibit large nonlinear optical (NLO) properties. However, extensive investigation into the NLO properties of h-BN have not been done so far. Here, NLO properties of 2D h-BN nanosheets (BNNS) are reported for the first time, using 1064-nm NIR laser radiation with a pulse duration of 10 ns using the Z-scan technique. The reverse saturable absorption occurs in aqueous colloidal solutions of BNNS with a very large two-photon absorption cross section (sigma(2PA)) of approximate to 57 x 10(-46) cm(4) s(-1) photon(-1). Also, by using UV-Vis absorption spectroscopy, the temperature coefficient of the bandgap (dE(g)/dT) of BNNS is determined to be 5.9 meV K-1. Further defect-induced photoluminescence emission in the UV region is obtained in the 283-303 K temperature range, under excitations of different wavelengths. The present report of large sigma(2PA) combined with stability and biocompatibility could open up new possibilities for the application of BNNS as a potential optical material for multiphoton bioimaging and advanced photonic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of an organic Rankine cycle (ORC) with dry cooling system aided by an earth-coupled passive cooling system. Several organic fluids were considered as working fluids in the ORC in the temperature range of 125-200 degrees C. An earth-air-heat-exchanger (EMU) is studied for a location in the United States (Las Vegas) and another in India (New Delhi), to pre cool the ambient air before entering an air-cooled condenser (ACC). It was observed that the efficiency of the system improved by 1-3% for the system located in Las Vegas and fluctuations associated with temperature variations of the ambient air were also reduced when the EAHE system was used. A ground-coupled heat pump (GCHP) is also studied for these locations where cooling water is pre cooled in an underground buried pipe before entering a condenser heat exchanger in a closed loop. The area of the buried pipe and the condenser size are calculated per kW of power generation for various working fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO2 (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO2/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO2/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights. (C) 2015 Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel flexible alloy substrate (Phynox, 50 mm thick) was used for the synthesis of zinc oxide (ZnO) nanorods via a low-temperature solution growth method. The growth of ZnO nanorods was observed over a low temperature range of 60-90 degrees C for a growth duration of 4 hours. The as-synthesized nanorods were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) for their morphology, crystallinity, microstructure and composition. The as-grown ZnO nanorods were observed to be relatively vertical to the substrate. However, the morphology of the ZnO nanorods in terms of their length, diameter and aspect ratio was found to vary with the growth temperature. The morphological variation was mainly due to the effects of the various relative growth rates observed at the different growth temperatures. The growth temperature influenced ZnO nanorods were also analyzed for their wetting (either hydrophobic or hydrophilic) properties. After carrying out multiple wetting behaviour analyses, it has been found that the as-synthesized ZnO nanorods are hydrophobic in nature. The ZnO nanorods have potential application possibilities in self-cleaning devices, sensors and actuators as well as energy harvesters such as nanogenerators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work explores the potential of semi-solid heat treatment technique by elucidating its effect on the plastic behavior of 304L SS in hot working domain. To accomplish this objective, hot isothermal compression tests on 304L SS specimens with semi-solid heat treatment and conventional annealing heat treatment have been carried out within a temperature range of 1273-1473 K and strain rates ranging from 0.01 to 1 s(-1). The dynamic flow behavior of this steel in its conventional heat-treated condition and semi-solid heat-treated condition has been characterized in terms of strain hardening, temperature softening, strain rate hardening, and dynamic flow softening. Extensive microstructural investigation has been carried out to corroborate the results obtained from the analysis of flow behavior. Detailed analysis of the results demonstrates that semi-solid heat treatment moderates work hardening, strain rate hardening, and temperature sensitivity of 304L SS, which is favorable for hot deformation. The post-deformation hardness values of semi-solid heat-treated steel and conventionally heat-treated steel were found to remain similar despite the pre-deformation heat treatment conditions. The results obtained demonstrate the potential of semi-solid heat treatment as a pre-deformation heat treatment step to effectively reduce the strength of the material to facilitate easier deformation without affecting the post-deformation properties of the steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic conductivity in (PEG)(x)LiBr systems is measured using the complex impedance method in the temperature range -20 degrees C to 100 degrees C. For x = 6 and 10, above a certain concentration dependent temperature T-c, a power law fit based on mode coupling theory is seen to better explain the data than the Vogel-Tamman-Fulcher (VTF) expression. Li-7 NMR linewidth measurements indicate two regions of motional narrowing, one attributable to segmental motion and the other to translational diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic samples of SrBi2Ta2O9 (SBT) were prepared by the solid state reaction method with a view to study their electrical properties. Reasons as to why SBT shows better fatigue endurance than conventional perovskites like Pb(Zr, Ti)O-3 are looked into. Complex impedance spectroscopy (CIS) was used as a tool to do so. CIS data was acquired over the temperature range from room temperature to 500 degrees C over a wide range of frequencies. Electrical conductivity data indicates that the conductivity in SBT is essentially due to oxygen vacancies and the activation energy for conduction in the high temperature region was found to be 0.95 eV. CIS was used to separate out the bulk and the interfacial contributions to complex impedance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal reaction of Ln(NO3)(3), Ni(NO3)(2), NaN3, and isonicotinic acid (L) yielded two novel 3-D coordination frameworks (1 and 2) of general formula [Ni(2)Ln(L)(5)(N-3)(2)(H2O)(3)] center dot 2H(2)O (Ln = Pr(III) for 1 and Nd(III) for 2), containing Ni-Pr or Ni-Nd hybrid extended three-dimensional networks containing both azido and carboxylate as co-ligands. Both the compounds are found to be isostructural and crystallize in monoclinic system having P2(1)/n space group. Here the lanthanide ions are found to be nonacoordinated. Both bidentate and monodentate modes of binding of the carboxylate with the lanthanides have been observed in the above complexes. Variable temperature magnetic studies of the above two complexes have been investigated in the temperature range 2-300 K which showed dominant antiferromagnetic interaction in both the cases and these experimental results are analyzed with the theoretical models. (c) 2008 Elsevier B.V. All rights reserved.