109 resultados para Powder metallurgy.
Resumo:
A systematic x-ray and neutron powder diffraction study of the giant tetragonality multiferroic (1-x) BiFeO3-(x) PbTiO3 have revealed that the compositions close to the morphotropic phase boundary present two different structural phase transition scenarios on cooling from the cubic phase: (i) cubic -> tetragonal (T-2) + tetragonal (T-1) -> tetragonal (T-1) and (ii) cubic -> tetragonal (T-2) + tetragonal (T-1) + rhombohedral (R3c) -> tetragonal (T-1) + rhombohedral (R3c). The comparatively larger tetragonality (c/a - 1) of the T-1 phase as compared to the coexisting isostructural T-2 phase is shown to be a result of significantly greater degree of overlap of the Pb/Bi-6s and Ti/Fe-3d with the O-2p orbitals as compared to that in the T-2 phase. The formation/suppression of the minor metastable rhombohedral phase seems to be governed by subtle play of local kinetic factors. In the scenario when the minor rhombohedral (R) phase is formed along with the tetragonal phases it is able to accommodate the large transformation stress in the system due to formation of the tetragonal phases, and prevent the solid from disintegration into powder after sintering. When the metastable rhombohedral phase is not formed, the large transformation strain ruptures the grain boundaries leading to fragmentation of the dense solid to powder. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4792215]
Resumo:
Nanoparticles are used for a number of biomedical applications. In this work we report the synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles. The anticancer drug, paclitaxel, is attached to the folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles and the in vitro drug release is analyzed. The surface modification and functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and UV spectroscopy. The importance of the paper is the investigation of the release behavior of paclitaxel conjugated folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. The results show an initial rapid release and then a sustained release. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.
Resumo:
Procedures were developed for purification and processing of electrodeposited enriched boron powder for control rod application in India's first commercial Proto Type Fast Breeder Reactor (PFBR). Methodology for removal of anionic (F-, Cl-, BF4-) and cationic (Fe2+, Fe3+, Ni2+) impurities was developed. Parameters for grinding boron flakes obtained after electrodeposition were optimized to obtain the boron powder having particle size less than 100 gm. The rate of removal of impurities was studied with respect to time and concentration of the reagents used for purification. Process parameters for grinding and removal of impurities were optimized. A flowsheet was proposed which helps in minimizing the purification time and concentration of the reagent used for the effective removal of impurities. The purification methodology developed in this work could produce boron that meets the technical specifications for control rod application in a fast reactor.
Resumo:
The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.
Resumo:
Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.
Resumo:
The phase formation behaviour of the magnetoelectric multiferroic 0.8BiFeO(3)-0.2PbTiO(3) was studied as a function of heat treatment at different temperatures of a sol-gel derived powder. While under ordinary synthesis conditions this composition exhibits antiferromagnetic ordering and a rhombohedral structure; the sol-gel-enabled low-temperature synthesis could stabilize a tetragonal metastable phase along with the stable rhombohedral phase, mimicking a morphotropic phase boundary state. The phase coexistence state exhibits relatively enhanced ferromagnetic correlation. The same system with a relatively higher PbTiO3 concentration, 0.65BiFeO(3)-0.35PbTiO(3), on the other hand, exhibits a rhombohedral metastable phase. These results suggest that the occurrence of metastable phases is a very common feature in the BiFeO3-PbTiO3 magnetoelectric ferroelectric system and that it affects the ferroelectric and magnetic properties of system quite remarkably.
Resumo:
The paper reports phase evolution in mechanically driven Ag-15 at. pct Sn alloy powder starting with elemental powders in order to establish the feasibility of designing nanocomposites of a Ag-Sn solid solution. This alloy lies in the phase field of the hexagonal zeta-phase which is a well-known Hume-Rothery electron compound with an electron-to-atom ratio of about 1.45 and hexagonal crystal structure (a = 0.2966 nm, c = 0.4782 nm). Through a systematic use of X-ray diffraction and transmission electron microscopy, the results establish the formation of the zeta-phase which co-exists with the Ag solid solution during the initial phase of milling. Mechanical milling for long duration (55 hours) destabilizes the zeta-phase. A complete solid solution of Ag with a grain size of similar to 8 nm could be achieved after 60 hours of milling. Additional milling can induce decomposition of the solid solution that results in a reappearance of zeta-phase. We present a detailed thermodynamic calculation which indicates that complete Ag solid solution of the present alloy composition would be possible if the crystallites size can be reduced below a certain critical size. In particular, we show that both Ag and zeta-phase grain sizes need to be taken into account for determining the metastable equilibrium and the phase change that has been experimentally observed. Finally, we argue that recrystallization processes set a limit to the achievable size of the nanoparticles with metastable Ag solid solution.
Resumo:
ZnS quantum dots (QDs) of different sizes are synthesized by a simple chemical co-precipitation method at room temperature, by varying pH value of the reaction mixture. Samples are characterized by an X-ray diffractometer, transmission electron microscope, energy-dispersive X-ray analysis, etc. Linear optical properties, including UV-visible absorption and photoluminescence emission characteristics, of as-prepared QDs are measured. Size dependent nonlinear optical property, such as second harmonic generation (SHG) of 1064 nm Nd:YAG laser fundamental radiation in the synthesized ZnS QDs, is reported for the first time, to the best of our knowledge, by using the standard Kurtz-Perry powder method. In not to study the possibility of the synthesized ZnS QDs in different device applications ZnS/PMMA (polymethylmethacrylate) nanocomposites are also synthesized. The presence of weak chemical interaction between the polymer matrix and ZnS QDs is confirmed by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites are studied by differential scanning calorimetry and thermo-gravimetric analysis techniques, which show that the composites are stable up to similar to 300 degrees C temperature. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effect of Zr, Hf, and Sn in BaTiO3 has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d(33)), with Sn modification exhibiting the highest value similar to 425 pC/N. (C) 2014 AIP Publishing LLC.
Resumo:
The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 . With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.
Resumo:
The(1-x) BiFeO3-(x) PbTiO3 solid solution exhibiting a Morphotropic Phase Boundary (MPB) has attracted considerable attention recently because of its unique features such as multiferroic, high Curie point (T-C similar to 700 degrees C) and giant tetragonality (c/a -1 similar to 0.19). Different research groups have reported different composition range of MPB for this system. In this work we have conclusively proved that the wide composition range of MPB reported in the literature is due to kinetic arrest of the metastable rhombohedral phase and that if sufficient temperature and time is allowed the metastable phase disappears. The genuine MPB was found to be x=0.27 for which the tetragonal and the rhombohedral phases are in thermodynamic equilibrium. In-situ high temperature structural study of x=0.27 revealed the sluggish kinetics associated with the temperature induced structural transformation. Neutron powder diffraction study revealed that themagnetic ordering at room temperature occurs in the rhombohedral phase. The magnetic structure was found to be commensurate G-type antiferromagnetic with magnetic moments parallel to the c-direction (of the hexagonal cell). The present study suggests that the equilibrium properties in this solid solution series should be sought for x=0.27.