89 resultados para Nodal Zeros


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Orthogonal Frequency Division Multiplexing and Discrete Multitone transceivers, a guard interval called Cyclic Prefix (CP) is inserted to avoid inter-symbol interference. The length of the CP is usually greater than the impulse response of the channel resulting in a loss of useful data carriers. In order to avoid long CP, a time domain equalizer is used to shorten the channel. In this paper, we propose a method to include a delay in the zero-forcing equalizer and obtain an optimal value of the delay, based on the location of zeros of the channel. The performance of the algorithms is studied using numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been attempts at obtaining robust guidance laws to ensure zero miss distance (ZMD) for interceptors with parametric uncertainties. All these laws require the plant to be of minimum phase type to enable the overall guidance loop transfer function to satisfy strict positive realness (SPR). The SPR property implies absolute stability of the closed loop system, and has been shown in the literature to lead to ZMD because it avoids saturation of lateral acceleration. In these works higher order interceptors are reduced to lower order equivalent models for which control laws are designed to ensure ZMD. However, it has also been shown that when the original system with right half plane (RHP) zeros is considered, the resulting miss distances, using such strategies, can be quite high. In this paper, an alternative approach using the circle criterion establishes the conditions for absolute stability of the guidance loop and relaxes the conservative nature of some earlier results arising from assumption of in�nite engagement time. Further, a feedforward scheme in conjunction with a lead-lag compensator is used as one control strategy while a generalized sampled hold function is used as a second strategy, to shift the RHP transmission zeros, thereby achieving ZMD. It is observed that merely shifting the RHP zero(s) to the left half plane reduces miss distances signi�cantly even when no additional controllers are used to ensure SPR conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new micro-scale model for solidification of eutectic alloys. The model is based on the enthalpy method and simulates the growth of adjacent alpha and beta phases from a melt of eutectic composition in a two-dimensional Eulerian framework. The evolution of the two phases is obtained from the solution of volume averaged energy and species transport equations which are formulated using the nodal enthalpy and concentration potential values. The three phases are tracked using the beta-phase fraction and the liquid fraction values in all the computational nodes. Solutal convection flow field in the domain is obtained from the solution of volume-averaged momentum and continuity equations. The governing equations are solved using a coupled explicit-implicit scheme. The model is qualitatively validated with Jackson-Hunt theory. Results show expected eutectic growth pattern and proper species transfer and diffusion field ahead of the interface. Capabilities of the model such as lamella width selection, division of lamella into thinner lamellae and the presence of solutal convection are successfully demonstrated. The present model can potentially be incorporated into the existing framework of enthalpy based micro-scale dendritic solidification models thus leading to an efficient generalized microstructure evolution model. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology has been presented for determining the stability of unsupported vertical cylindrical excavations by using an axisymmetric upper bound limit analysis approach in conjunction with finite elements and linear optimization. For the purpose of excavation design, stability numbers (S-n) have been generated for both (1) cohesive-frictional soils and (2) pure cohesive soils, with an additional provision accounting for linearly increasing cohesion with increasing depth by means of a nondimensional factor m. The variation of S-n with H/b has been established for different values of m and phi, where H and b refer to the height and radius of the cylindrical excavation. A number of useful observations have been gathered about the variation of the stability number and nodal velocity patterns as H/b, phi, and m change. The results of the analysis compare quite well with the different solutions reported in the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study moduli spaces M-X (r, c(1), c(2)) parametrizing slope semistable vector bundles of rank r and fixed Chern classes c(1), c(2) on a ruled surface whose base is a rational nodal curve. We showthat under certain conditions, these moduli spaces are irreducible, smooth and rational (when non-empty). We also prove that they are non-empty in some cases. We show that for a rational ruled surface defined over real numbers, the moduli space M-X (r, c(1), c(2)) is rational as a variety defined over R.