200 resultados para Nitrate bidentate
Resumo:
Three strains ofMadurella mycetomi, two ofM. grisea, and two ofRhinocladiella mansonii have been studied for ossible differences in growth requirements which might be used for distinguishing these species. Under the experimental conditions, an incubation temperature of 37C suitedM. mycetomi about as well as 30C.R. mansonii grew less well at 37C than at 30C, andM. grisea did not grow at the higher temperature. M. grisea andR. mansonii further differed fromM. mycetomi in that they required thiamine for growth. The pH tolerance of all the strains was very wide. Asparagine and potassium nitrate were readily utilized by all the strains, but ammonium salts were not. Urea was poorly used byM. mycetomi; the other species did not use it. A possible relationship ofM. grisea andR. mansonii is discusse
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.
Resumo:
Miconazole nitrate (2%) cream was evaluated in the treatment of superficial mycoses. Out of 116 patients having multiple clinical diagnoses, 66 cases were found to be positive by culture. Species of Trichophyton were the predominant etiological agents (in over 60%) followed by Candida species (20%) and Epidermophyton floccosum (15%). All the cases selected for study were followed up to a period of 4–18 months. A cure rate of 94.6 per cent was observed in all the cases where causal organisms were isolated. Significantly high cure rate (66%) was also seen in cases where causal organisms could not be isolated, including cases of tinea versicolor. Results of mycological examination were in confirmity with the clinical results
Resumo:
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.
Resumo:
We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.
Resumo:
Nanoparticles of trivalent Eu3+-doped Nd2O3 phosphors have been prepared using a low-temperature solution combustion method with metal nitrate as precursor and oxalyldihydrazide as a fuel at a fairly low temperature (<500 degrees C) and in a very short time (<5 min). A powder X-ray diffraction pattern reveals that cubic Nd2O3 : Eu3+ crystallites are directly obtained without the requirement of further calcinations. The crystallite size, evaluated from Scherer's formula, was found to be in the range of 20-30 nm. The microstructure and morphology were studied by scanning electron microscopy, which showed the phosphor to be foamy and fluffy in nature. Thermoluminescence characteristics of the Nd2O3 : Eu3+ have been studied using gamma irradiation. These demonstrate that the phosphor is suitable for use as a dosimeter.
Resumo:
Oxovanadium(IV) complexes [VO(L)(B)]Cl-2 (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline(phen),dipyrido[3,2-d:2',3'-f]quinoxaline(dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells, The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON5 coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III)couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M-1. The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor ``chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells giving IC50 value of 17 mu M in visible light(IC50 = 175 mu M in dark).
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Catalytic activity of cordierite honeycomb by a completely new coating method for the oxidation of major hydrocarbons in exhaust gas is reported here. The new coating process consists of (a) dipping and growing γ-Al2O3 on cordierite by combustion of monolith dipped in the aqueous solution of Al(NO3)3 and oxalyldihydrazide (ODH) (or glycine) at 600 °C and active catalyst phase Ce0.98Pd0.02O2−δ on γ-Al2O3-coated cordierite again by combustion of monolith dipped in the aqueous solution of ceric ammonium nitrate, ODH and 1.2 × 10−3 M PdCl2 solution at 500 °C. Weight of active catalyst can be varied from 0.02 wt% to 2 wt% which is sufficient but can be loaded even up to 12 wt% by repeating dip dry combustion. Adhesion of catalyst to cordierite surface is via oxide growth, which is very strong. ‘HC’ oxidation over the monolith catalyst is carried out with a mixture having the composition, 470 ppm of both propene and propane and 870 ppm of both ethylene and acetylene with the varying amount of O2. Three-way catalytic test is done by putting hydrocarbon mixture along with CO (10 000 ppm), NO (2000 ppm) and O2 (15 000 ppm). Below 350 °C full conversion is achieved. In this method, handling of nano-material powder is avoided.