133 resultados para Multilayered coatings
Resumo:
The polyvinylidene fluoride (PVDF) membrane is modified by the chemical etchant-route employing a sodium naphthalene charge-transfer complex followed by impregnation with Nafion ionomer or polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) polymeric blend solutions by a dip-coating technique to form pore-filled-membrane electrolytes for application in direct methanol fuel cells (DMFCs). The number of coatings on the surface-modified PVDF membrane is varied between 5 and 15 and is found to be optimum at 10 layers both for Nafion and PVA-PSSA impregnations for effective DMFC performance. Hydrophilicity of the modified-membrane electrolytes is studied by determining average contact angle and surface-wetting energy. Morphology of the membranes is analyzed by a cross-sectional scanning electron microscope. The modified PVDF membrane electrolytes are characterized for their water-methanol sorption in conjunction with their mechanical properties, proton conductivity, and DMFC performance. Air permeability for the modified membranes is studied by a capillary-flow porometer. Methanol crossover flux across modified-PVDF-membrane electrolytes is studied by measuring the mass balance of methanol using a density meter. DMFCs employing membrane electrode assemblies with the modified PVDF membranes exhibit a peak power-density of 83 mW/cm(2) with Nafion impregnation and 59 mW/cm(2) for PVA-PSSA impregnation, respectively. Among the membranes studied here, stabilities of modified-pore-filled PVDF-Nafion and PVDF-PVA-PSSA membranes with 10-layers coat are promising for application in DMFCs. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3518774] All rights reserved.
Resumo:
CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.
Resumo:
Plasma-sprayable powders of calcia, magnesia and yttria-stabilized zirconia have been prepared by using polyvinyl alcohol binders. The powders have been characterized for sprayability by spray coating on steer plates previously coated with an NiAl bond coat. The suitability of these coatings for thermal barrier applications have been examined. Thermal barrier and related properties, along with phase stability and mechanical properties, have been found to be good. Failure of the thermal barrier coating has been observed to occur at the interface between the bond coat and the substrate, due to the formation of a pile-up layer consisting of Fe-Zr-Al-O compound.
Resumo:
Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
The structure of ordered phases that are formed when nitrogen is confined in slit graphite pores of height h is investigated using Monte Carlo simulations. The pore wall consists of a single-structured graphite sheet. Canonical ensemble simulations are carried out for temperatures ranging from 15 to 70Kwith layer density distributions, in-plane, out-of-plane angular distributions and snapshots evaluated at different temperatures. At each pore height the pore densities are obtained from independent grand ensemble simulations. At the smallest pore height studied (h)7 Å), where a single layer of molecules is accommodated at the center of the pore, the orientations are predominantly wall parallel, forming a biaxially incommensurate herringbone structure.Whentwo or more fluid layers are formed in the slit pore, the orientation of molecules adsorbed next to the wall can exist in either the herringbone or hexagonal phases. In all the multilayered cases studied, with the exception of the h ) 10 Å pore, where both wall layers form a commensurate herringbone structure, the low-temperature wall structures are incommensurate, possessing 6-fold hexagonal symmetry. The presence of the pinwheel structures, which were observed at low temperatures in the h ) 12 Å and h ) 14 Å pores, is determined by the pore height or the proximity and/or density of the adjacent fluid layers when inner layers are present.
Resumo:
Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.
Resumo:
Yttrium oxide (Y(2)O(3)) thin films were deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition (MOCVD) process using indigenously developed metal organic precursors Yttrium 2,7,7-trimethyl-3,5-octanedionates, commonly known as Y(tod)(3) which were synthesized by an ultrasound method. A series of thin films were deposited by varying the oxygen flow rate from 1-9 sccm, keeping all other parameters constant. The deposited coatings were characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and roughness for the films were measured by stylus profilometry. Optical properties of the coatings were studied by the spectroscopic ellipsometry. Hardness and elastic modulus of the films were measured by nanoindentation technique. Being that microwave ECR CVD process is operating-pressure-sensitive, optimum oxygen activity is very essential for a fixed flow rate of precursor, in order to get a single phase cubic yttrium oxide in the films. To the best of our knowledge, this is the first effort that describes the use of Y(tod)(3) precursor for deposition of Y(2)O(3) films using plasma assisted CVD process.
Resumo:
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present a systematic study to explore the effect of important process variables on the composition and structure of niobium nitride thin films synthesized by Reactive Pulsed Laser Deposition (RPLD) technique through ablation of high purity niobium target in the presence of low pressure nitrogen gas. Secondary Ion Mass Spectrometry has been used in a unique way to study and fix gas pressure, substrate temperature and laser fluence, in order to obtain optimized conditions for one variable in single experimental run. The x-ray diffraction and electron microscopic characterization have been complemented by proton elastic backscattering spectroscopy and x-ray photoelectron spectroscopy to understand the incorporation of oxygen and associated non-stoichiometry in the metal to nitrogen ratio. The present study demonstrates that RPLD can be used for obtaining thin film architectures using non-equilibrium processing. Finally the optimized NbN thin films were characterized for their hardness using nano-indentation technique and found to be similar to 30 GPa at the deposition pressure of 8 Pa. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Although some researchers have published friction and wear data of Plasma Nitride (PN) coatings, the tribological behavior of PN/PN Pairs in high vacuum environment has not been published so far In order to bridge this knowledge gap, tribological tests under dry conditions have been conducted on PN/PN Pairs for varying temperatures of 25, 200, 400 and 500 degrees C in high vacuum (1.6 x 10(-4) bar) environment. The PN coatings showed good wear resistance layer on the ring surface. The PN coatings were removed only from the pin surface for all the tests since it contacts at a point. The friction and wear were low at lower temperatures and it eliminated adhesion between the contact surfaces until the coating was completely removed from the pin surface. (C) 2011 Journal of Mechanical Engineering. All rights reserved.
Resumo:
Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.