95 resultados para Linear semi-infinite optimization
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
A new method of network analysis, a generalization in several different senses of existing methods and applicable to all networks for which a branch-admittance (or impedance) matrix can be formed, is presented. The treatment of network determinants is very general and essentially four terminal rather than three terminal, and leads to simple expressions based on trees of a simple graph associated with the network and matrix, and involving products of low-order, usually(2 times 2)determinants of tree-branch admittances, in addition to tree-branch products as in existing methods. By comparison with existing methods, the total number of trees and of tree pairs is usually considerably reduced, and this fact, together with an easy method of tree-pair sign determination which is also presented, makes the new method simpler in general. The method can be very easily adapted, by the use of infinite parameters, to accommodate ideal transformers, operational amplifiers, and other forms of network constraint; in fact, is thought to be applicable to all linear networks.
Resumo:
A unique code (called Hensel's code) is derived for a rational number by truncating its infinite p-adic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure.
Resumo:
The loss rate of linear momentum from a binary system composed of compact objects (radially falling towards each other under mutual gravitational influence) has been investigated using the multipolar post-Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided, in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil velocity accumulated during a premerger phase of the binary evolution.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ranking problems have become increasingly important in machine learning and data mining in recent years, with applications ranging from information retrieval and recommender systems to computational biology and drug discovery. In this paper, we describe a new ranking algorithm that directly maximizes the number of relevant objects retrieved at the absolute top of the list. The algorithm is a support vector style algorithm, but due to the different objective, it no longer leads to a quadratic programming problem. Instead, the dual optimization problem involves l1, ∞ constraints; we solve this dual problem using the recent l1, ∞ projection method of Quattoni et al (2009). Our algorithm can be viewed as an l∞-norm extreme of the lp-norm based algorithm of Rudin (2009) (albeit in a support vector setting rather than a boosting setting); thus we refer to the algorithm as the ‘Infinite Push’. Experiments on real-world data sets confirm the algorithm’s focus on accuracy at the absolute top of the list.
Resumo:
In this paper, we present a methodology for designing a compliant aircraft wing, which can morph from a given airfoil shape to another given shape under the actuation of internal forces and can offer sufficient stiffness in both configurations under the respective aerodynamic loads. The least square error in displacements, Fourier descriptors, geometric moments, and moment invariants are studied to compare candidate shapes and to pose the optimization problem. Their relative merits and demerits are discussed in this paper. The `frame finite element ground structure' approach is used for topology optimization and the resulting solutions are converted to continuum solutions. The introduction of a notch-like feature is the key to the success of the design. It not only gives a good match for the target morphed shape for the leading and trailing edges but also minimizes the extension of the flexible skin that is to be put on the airfoil frame. Even though linear small-displacement elastic analysis is used in optimization, the obtained designs are analysed for large displacement behavior. The methodology developed here is not restricted to aircraft wings; it can be used to solve any shape-morphing requirement in flexible structures and compliant mechanisms.
Resumo:
The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.
Resumo:
The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.
Resumo:
In this paper we propose a framework for optimum steering input determination of all-wheel steer vehicles (AWSV) on rough terrains. The framework computes the steering input which minimizes the tracking error for a given trajectory. Unlike previous methodologies of computing steering inputs of car-like vehicles, the proposed methodology depends explicitly on the vehicle dynamics and can be extended to vehicle having arbitrary number of steering inputs. A fully generic framework has been used to derive the vehicle dynamics and a non-linear programming based constrained optimization approach has been used to compute the steering input considering the instantaneous vehicle dynamics, no-slip and contact constraints of the vehicle. All Wheel steer Vehicles have a special parallel steering ability where the instantaneous centre of rotation (ICR) is at infinity. The proposed framework automatically enables the vehicle to choose between parallel steer and normal operation depending on the error with respect to the desired trajectory. The efficacy of the proposed framework is proved by extensive uneven terrain simulations, for trajectories with continuous or discontinuous velocity profile.