136 resultados para LIVER SAMPLES
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Significant destruction (68%) of liver microsomal cytochrome P-450 and homogeneous cytochrome P-450 purified from PB-treated rats is noticed upon incubation with 10 mM pulegone at 37-degrees-C for 30 min. There is also a concomitant loss of heme. The destructive phenomenon does not require metabolic activation of pulegone. The destruction of purified cytochrome P-450 is time-dependent and saturable. Structure-activity studies suggest that an alpha-isopropylidine ketone unit with a methyl positioned para to the isopropylidine group as in pulegone is necessary for the in vitro destruction of cytochrome P-450. SKF-525A at a concentration of 4-mM obliterates the destruction of cytochrome P-450 by pulegone. Experiments with C-14-pulegone suggest that pulegone or its rearranged product binds covalently to the prosthetic heme of cytochrome P-450.
Resumo:
A cDNA clone has been isolated from a chicken liver library prepared against messenger RNA isolated after chronic estradiol-17β treatment. The clone, pP-450 IA - 61, has an insert of 900nt and the sequence shows high homology to CYPIA2 subfamily from four other species. A single injection of estradiol-17β to immature chicken results in a striking induction of mRNA hybridizing to labeled pP-450IA - 61. The probe also hybridizes to mRNA induced by 3 — methylcholanthrene in chicken. These results offer direct proof for the similarity in the mode of action at the transcriptional level of polyaromatic hydrocarbons and estrogenic compounds.
Resumo:
The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.
Resumo:
1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.
Effect if clofibrate on growth and mitochondrial oxidative-phosphprylation in regenerating rat-liver
Resumo:
The expression of cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes has been studied as a function of development in rat liver. The levels of cytochrome P-450 (b+e) mRNAs and their transcription rates are too low for detection in the 19-day old fetal liver before or after phenobarbitone treatment. However, glutathione transferase (Ya+Yc) mRNAs can be detected in the fetal liver as well as their induction after phenobarbitone treatment can be demonstrated. These mRNAs contents as well as their inducibility with phenobarbitone are lower in maternal liver than that of adult nonpregnant female rat liver. Steroid hormone administration to immature rats blocks substantially the phenobarbitone mediated induction of the two mRNA families as well as their transcription. It is suggested that steroid hormones constitute one of the factors responsible for the repression of the cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes in fetal liver.