140 resultados para LATTICE DISTORTION
Resumo:
The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We discuss the properties of a one-dimensional lattice model of a driven system with two species of particles in which the mobility of one species depends on the density of the other. This model was introduced by Lahiri and Ramaswamy (Phys. Rev. Lett., 79, 1150 (1997)) in the context of sedimenting colloidal crystals, and its continuum version was shown to exhibit an instability arising from linear gradient couplings. In this paper we review recent progress in understanding the full phase diagram of the model. There are three phases. In the first, the steady state can be determined exactly along a representative locus using the condition of detailed balance. The system shows phase separation of an exceptionally robust sort, termed strong phase separation, which survives at all temperatures. The second phase arises in the threshold case where the first species evolves independently of the second, but the fluctuations of the first influence the evolution of the second, as in the passive scalar problem. The second species then shows phase separation of a delicate sort, in which long-range order coexists with fluctuations which do not damp down in the large-size limit. This fluctuation-dominated phase ordering is associated with power law decays in cluster size distributions and a breakdown of the Porod law. The third phase is one with a uniform overall density, and along a representative locus the steady state is shown to have product measure form. Density fluctuations are transported by two kinematic waves, each involving both species and coupled at the nonlinear level. Their dissipation properties are governed by the symmetries of these couplings, which depend on the overall densities. In the most interesting case,, the dissipation of the two modes is characterized by different critical exponents, despite the nonlinear coupling.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
The problem of guessing a random string is revisited. The relation-ship between guessing without distortion and compression is extended to the case when source alphabet size is countably in¯nite. Further, similar relationship is established for the case when distortion allowed by establishing a tight relationship between rate distortion codes and guessing strategies.
Resumo:
One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed.
Resumo:
A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter ‘α’, the energy concept is introduced. The softening branch of load-displacement curves was successfully obtained. From the sensitivity study, it was observed that the maximum load of a beam is most sensitive to the tensile strength of mortar. It is seen that by varying the values of properties of mortar according to a normal random distribution, better results can be obtained for load-displacement diagram.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [ A. Patel and M. A. Rahaman Phys. Rev. A 82 032330 (2010)] provides an O(√NlnN) algorithm, which is not optimal. The scaling behavior can be improved to O(√NlnN) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78 012310 (2008). We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
The problem of intrusion detection and location identification in the presence of clutter is considered for a hexagonal sensor-node geometry. It is noted that in any practical application,for a given fixed intruder or clutter location, only a small number of neighboring sensor nodes will register a significant reading. Thus sensing may be regarded as a local phenomenon and performance is strongly dependent on the local geometry of the sensor nodes. We focus on the case when the sensor nodes form a hexagonal lattice. The optimality of the hexagonal lattice with respect to density of packing and covering and largeness of the kissing number suggest that this is the best possible arrangement from a sensor network viewpoint. The results presented here are clearly relevant when the particular sensing application permits a deterministic placement of sensors. The results also serve as a performance benchmark for the case of a random deployment of sensors. A novel feature of our analysis of the hexagonal sensor grid is a signal-space viewpoint which sheds light on achievable performance.Under this viewpoint, the problem of intruder detection is reduced to one of determining in a distributed manner, the optimal decision boundary that separates the signal spaces SI and SC associated to intruder and clutter respectively. Given the difficulty of implementing the optimal detector, we present a low-complexity distributive algorithm under which the surfaces SI and SC are separated by a wellchosen hyperplane. The algorithm is designed to be efficient in terms of communication cost by minimizing the expected number of bits transmitted by a sensor.
Resumo:
Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.
Resumo:
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron x-ray powder diffraction investigations of single crystals Fe(1+y) Te (0.06 <= y <= 0.15) reveal a splitting of a single, first-order transition for y <= 0.11 into two transitions for y >= 0.13. Most strikingly, all measurements on identical samples Fe(1.13)Te consistently indicate that, upon cooling, the magnetic transition at T(N) precedes the first-order structural transition at a lower temperature T(s). The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c axis display a small distortion close to T(N) due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T(s). The lattice symmetry changes, however, only below T(s) as indicated by powder x-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.
Resumo:
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.