96 resultados para Intestinal Damage
Resumo:
Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.
Resumo:
Stiffener is one of the major components of aircraft structures to increase the load carrying capacity. Damage in the stiffener, mostly in the form of crack is an unavoidable problem in aerospace structures. Stiffener is bonded to the inner side of the aircraft panel which is not accessible for immediate inspection. A sensor-actuator network can be placed on the outer side of the panel that is accessible. Ultrasonic lamb waves are transmitted through stiffener using the sensoractuator network for detecting the presence of damages. The sensor-actuator network is placed on both halves of the stiffened section on the accessible surface of the plate. Detecting damage in stiffener by using this technique has significant potential for SHM technology. One of the major objectives of the present work is to determine the smallest detectable crack on the stiffener using the proposed technique. Wavelet based damage parameter correlation studies are carried out. In the proposed scheme, with increase in the damage size along the stiffener, it is found that the amplitude of the received signal decreases monotonically. The advantage of this technique is that the stiffened panels need not be disassembled in a realistic deployment of SHM system.
Resumo:
The mechanical behaviour of composite materials differs from that of conventional structural materials owing to their heterogeneous and anisotropic nature. Different types of defects and anomalies get induced in these materials during the fabrication process. Further, during their service life, the components made of composite materials develop different types of damage. The performance and life of such components is governed by the combined effect of all these defects and damage. While porosity, voids, inclusions etc., are some defects those can get induced during the fabrication of composites, matrix cracks, interface debonds, delaminations and fiber breakage are major types of service induced damage which are of concern. During the service life of components made of composites, one type of damage can grow and initiate another type of damage. For example, matrix cracks can gradually grow to the interface and initiate debonds. Interface debonds in a particular plane can lead to delaminations. Consequently, the combined effect of different types of distributed damage causes the failure of the component. A set of non-destructive evaluation (NDE) methods is well established for testing conventional metallic materials. Some of them can also be utilized for composite materials as they are, and in some cases with a little different approach or modification. Ultrasonics, Radiography, Thermography, Fiber Optics, Acoustic Emision Techniques etc., to name a few. Detection, evaluation and characterization of different types of defects and damage encountered in composite materials and structures using different NDE tools is discussed briefly in this paper.
Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
The problem of multiple site damage in aged airplane fuselage is handled in this paper. The analytical and numerical procedures used for the estimation of the strength of a flat panel with such multi-site damage are presented. Further, numerical results are presented on the residual strength of the panel using fracture mechanics-based approach and the stress levels when the leading crack is likely to link up with multiple site damage cracks. The presence of multiple site damage cracks in the vicinity of leading crack significantly decreases the residual strength of the panel. The model is verified using experimental data from the open literature and the predictions are in good agreement with the measured residual strength.
Resumo:
Three possible contact conditions may prevail at a contact interface depending on the magnitude of normal and tangential loads, that is, stick condition, partial slip condition or gross sliding condition. Numerical techniques have been used to evaluate the stress field under partial slip and gross sliding condition. Cattaneo and Mindlin approach has been adapted to model partial slip condition. Shear strain energy density and normalized strain energy release rate have been evaluated at the surface and in the subsurface region. It is apparent from the present study that the shear strain energy density gives a fair prediction for the nucleation of damage, whereas the propagation of the crack is controlled by normalized strain energy release rate. Further, it has been observed that the intensity of damage strongly depends on coefficient of friction and contact conditions prevailing at the contact interface. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.
Resumo:
Reinforced concrete (RC) beams of span 3 m were tested under incremental cyclic load at different loading rates and simultaneously during the fracture process in the RC beams acoustic emissions (AE) were recorded. An attempt has been made to study the Kaiser effect as a measure of damage in RC beams. It was observed that RC beams made with high strength concrete under incremental cyclic loading showed an obvious Kaiser effect before the failure load. The results may be useful to study the damage in concrete structures and provide a reference for the application of Kaiser effect in engineering practice. (C) 2014 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.
Resumo:
A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.
Resumo:
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic
Resumo:
Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.
Resumo:
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 mu M) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading Delta psi m dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.
Resumo:
Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being clinically evaluated by several groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this paper have the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.
Resumo:
In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.