171 resultados para Heterogeneous Regressions Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is argued that the nanometric dispersion of Bi in a Zn matrix is an ideal model system for heterogeneous nucleation experiments. The classical theory of heterogeneous nucleation with a hemispherical cap model is applied to analyse the nucleation data. It is shown that, unlike the results of earlier experiments, the derived site density for catalytic nucleation and contact angle are realistic and strongly suggest the validity of the classical theory. The surface energy between the 0001 plane of Zn and the <10(1)over bar 2> plane of Bi, which constitute the epitaxial nucleation interface, is estimated to be 39 mJ m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithms (GAs) are search methods that are being employed in a multitude of applications with extremely large search spaces. Recently, there has been considerable interest among GA researchers in understanding and formalizing the working of GAs. In an earlier paper, we have introduced the notion of binomially distributed populations as the central idea behind an exact ''populationary'' model of the large-population dynamics of the GA operators for objective functions called ''functions of unitation.'' In this paper, we extend this populationary model of GA dynamics to a more general class of objective functions called functions of unitation variables. We generalize the notion of a binomially distributed population to a generalized binomially distributed population (GBDP). We show that the effects of selection, crossover, and mutation can be exactly modelled after decomposing the population into GBDPs. Based on this generalized model, we have implemented a GA simulator for functions of two unitation variables-GASIM 2, and the distributions predicted by GASIM 2 match with those obtained from actual GA runs. The generalized populationary model of GA dynamics not only presents a novel and natural way of interpreting the workings of GAs with large populations, but it also provides for an efficient implementation of the model as a GA simulator. (C) Elsevier Science Inc. 1997.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous phase oxidation of sulphur dioxide at low concentrations catalysed by a PVP-Cu complex in the solid phase and dissolved Cu(II) in the liquid phase is studied in a rotating catalyst basket reactor (RCBR). The equilibrium adsorption of Cu(II) and S(VI) on PVP particles is found to be of the Langmuir-type. The diffusional effects of S(IV) species in PVP-Cu resin are found to be insignificant whereas that of product S(VI) are found to be significant. The intraparticle diffusivity of S(VI) is obtained from independent tracer experiments. In the oxidation reaction HSO3- is the reactive species. Both the S(IV) species in the solution, namely SO2(aq) and HSO3- get adsorbed onto the active PVP-Cu sites of the catalyst, but only HSO3- undergoes oxidation. A kinetic mechanism is proposed based on this feature which shows that SO2(aq) has a deactivating effect on the catalyst. A rate model is developed for the three-phase reaction system incorporating these factors along with the effect of concentration of H2SO4 on the solubility of SO2 in the dilute aqueous solutions of Cu(II). Transient oxidation experiments are conducted at different conditions of concentration of SO2 and O-2 in the gas phase and catalyst concentration, and the rate parameters are estimated from the data. The observed and calculated profiles are in very good agreement. This confirms the deactivating effect of nonreactive SO2(aq) on the heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are p heterogeneous objects to be assigned to n competing agents (n > p) each with unit demand. It is required to design a Groves mechanism for this assignment problem satisfying weak budget balance, individual rationality, and minimizing the budget imbalance. This calls for designing an appropriate rebate function. When the objects are identical, this problem has been solved which we refer as WCO mechanism. We measure the performance of such mechanisms by the redistribution index. We first prove an impossibility theorem which rules out linear rebate functions with non-zero redistribution index in heterogeneous object assignment. Motivated by this theorem,we explore two approaches to get around this impossibility. In the first approach, we show that linear rebate functions with non-zero redistribution index are possible when the valuations for the objects have a certain type of relationship and we design a mechanism with linear rebate function that is worst case optimal. In the second approach, we show that rebate functions with non-zero efficiency are possible if linearity is relaxed. We extend the rebate functions of the WCO mechanism to heterogeneous objects assignment and conjecture them to be worst case optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a discrete time queue with finite capacity and i.i.d. and Markov modulated arrivals, Efficient algorithms are developed to calculate the moments and the distributions of the first time to overflow and the regeneration length, Results are extended to the multiserver queue. Some illustrative numerical examples are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific integrated processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user is using Orthogonal Frequency Division Multiplexing (OFDM). For this we develop cooperative sequential detection algorithms that use the autocorrelation property of cyclic prefix (CP) used in OFDM systems. We study the effect of timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. We also modify the detector to mitigate the effects of these impairments. The performance of the proposed algorithms is studied via simulations. We show that sequential detection can significantly improve the performance over a fixed sample size detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instruction scheduling with an automaton-based resource conflict model is well-established for normal scheduling. Such models have been generalized to software pipelining in the modulo-scheduling framework. One weakness with existing methods is that a distinct automaton must be constructed for each combination of a reservation table and initiation interval. In this work, we present a different approach to model conflicts. We construct one automaton for each reservation table which acts as a compact encoding of all the conflict automata for this table, which can be recovered for use in modulo-scheduling. The basic premise of the construction is to move away from the Proebsting-Fraser model of conflict automaton to the Muller model of automaton modelling issue sequences. The latter turns out to be useful and efficient in this situation. Having constructed this automaton, we show how to improve the estimate of resource constrained initiation interval. Such a bound is always better than the average-use estimate. We show that our bound is safe: it is always lower than the true initiation interval. This use of the automaton is orthogonal to its use in modulo-scheduling. Once we generate the required information during pre-processing, we can compute the lower bound for a program without any further reference to the automaton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed two reduced complexity bit-allocation algorithms for MP3/AAC based audio encoding, which can be useful at low bit-rates. One algorithm derives optimum bit-allocation using constrained optimization of weighted noise-to-mask ratio and the second algorithm uses decoupled iterations for distortion control and rate control, with convergence criteria. MUSHRA based evaluation indicated that the new algorithm would be comparable to AAC but requiring only about 1/10 th the complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we address the problem of multi-agent search. We formulate two deploy and search strategies based on optimal deployment of agents in search space so as to maximize the search effectiveness in a single step. We show that a variation of centroidal Voronoi configuration is the optimal deployment. When the agents have sensors with different capabilities, the problem will be heterogeneous in nature. We introduce a new concept namely, generalized Voronoi partition in order to formulate and solve the heterogeneous multi-agent search problem. We address a few theoretical issues such as optimality of deployment, convergence and spatial distributedness of the control law and the search strategies. Simulation experiments are carried out to compare performances of the proposed strategies with a few simple search strategies.