177 resultados para Heat and Mass Transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar incompressible boundary-layer attachment-line flow on a flat plate with attached cylinder with heat and mass transfer has been studied when the free stream velocity, mass transfer and surface wall temperature vary arbitrarily with time. The governing partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme. The heat transfer was found to be strongly dependent on the Prandtl number, variation of wall temperature with time and dissipation parameter (for large times). However, the free stream velocity distribution and mass transfer affect both the heat transfer and skin friction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface tension gradient driven flow that occurs during laser melting has been studied. The vorticity-streamfunction form of the Navier-Stokes equations and the energy equation has been solved by the ‘Alternative Direction Implicit’ method. It has been shown that the inertia forces in the melt strongly influence the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be negligible compared to the surface tension gradient driven flow in laser melting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady natural convection flow from a horizontal cylindrical annulus filled with a non-Darcy porous medium has been studied. The unsteadiness in the problem arises due to the impulsive change in the wall temperature of the outer cylinder. The Navier–Stokes equations along with the energy equation governing the unsteady natural convection flow have been solved by the finite-volume method. The effect of time variation on the heat transfer is more pronounced only in a small time interval immediately after the start of the impulsive motion and the steady state is reached after certain time. The results show that the annulus completely filled with a porous medium has the best insulating effectiveness. Convection in the horizontal annulus is confined mostly at top and bottom regions. Hence, only these regions should be insulated. In case of annulus partially filled with a porous material, insulating the region near the outer cylinder is more effective than insulating the region near the inner cylinder. The effect of Darcy number on the heat transfer is more pronounced than that of the Grashof number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (eta, tau). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-similar solutions of the unsteady compressible laminar boundary layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer are studied for all the second-order boundary layer effects when the free stream velocity varies arbitrarily with time. The set of partial differential equations governing the unsteady compressible second-order boundary layers representing all the effects are derived for the first time. These partial differential equations are solved numerically using an implicit finite-difference scheme. The results are obtained for two particular unsteady free stream velocity distributions: (a) an accelerating stream and (b) a fluctuating stream. It is observed that the total skin friction and heat transfer are strongly affected by the surface mass transfer and wall temperature. However, their variation with time is significant only for large times. The second-order boundary layer effects are found to be more pronounced in the case of no mass transfer or injection as compared to that for suction. Résumé Des solutions semi-similaires d'écoulement variable compressible de couche limite sur des corps bi-dimensionnels thermique, sont étudiées pour tous les effets de couche limite du second ordre, lorsque la vitesse de l'écoulement libre varie arbitrairement avec le temps. Le systéme d'équations aux dérivées partielles représentant tous les effets est écrit pour la premiére fois. On le résout numériquement á l'aide d'un schéma implicite aux différences finies. Les résultats sont obtenus pour deux cas de vitesse variable d'écoulement libre: (a) un écoulement accéléré et (b) un écoulement fluctuant. On observe que le frottement pariétal total et le transfert de chaleur sont fortement affectés par le transfert de masse et la température pariétaux. Néanmoins, leur variation avec le temps est sensible seulement pour des grandes durées. Les effets sont trouvés plus prononcés dans le cas de l'absence du transfert de masse ou de l'injection par rapport au cas de l'aspiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis is performed to study the flow and heat transfer characteristics for the case of laminar mixed convection along a vertical circular cone. A mixed-convection parameter is introduced in the formulation of the problem such that smooth transition from one convective limit to the other is possible. The transformed conservation equations of the nonsimilar boundary layers are solved by an efficient finite-difference method.