208 resultados para Hamiltonien effectif de spin
Resumo:
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
Infrared spectroscopy provides a valuable tool to investigate the spin-state transition in Fe(II) complexes of the type Fe(Phen)2(NCS)2. With progressive substitution of Fe by Mn, the first-order transition changes over to a second-order transition, with a high residual population of the high-spin state even at very low temperatures
Resumo:
A phenomenological model of spin sharing by the constituents of a proton is constructed, based on the recent EMC measurement of the spin dependent structure function and knowledge of the unpolarized parton densities.
Resumo:
The aim of this paper is to construct a nonequilibrium statistical‐mechanics theory to study hysteresis in ferromagnetic systems. We study the hysteretic response of model spin systems to periodic magnetic fields H(t) as a function of the amplitude H0 and frequency Ω. At fixed H0, we find conventional, squarelike hysteresis loops at low Ω, and rounded, roughly elliptical loops at high Ω, in agreement with experiments. For the O(N→∞), d=3, (Φ2)2 model with Langevin dynamics, we find a novel scaling behavior for the area A of the hysteresis loop, of the form A∝H0.660Ω0.33. We carry out a Monte Carlo simulation of the hysteretic response of the two‐dimensional, nearest‐neighbor, ferromagnetic Ising model. These results agree qualitatively with the results obtained for the O(N) model.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.