152 resultados para Gas flow control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear control design approach is presented in this paper for a challenging application problem of ensuring robust performance of an air-breathing engine operating at supersonic speed. The primary objective of control design is to ensure that the engine produces the required thrust that tracks the commanded thrust as closely as possible by appropriate regulation of the fuel flow rate. However, since the engine operates in the supersonic range, an important secondary objective is to ensure an optimal location of the shock in the intake for maximum pressure recovery with a sufficient margin. This is manipulated by varying the throat area of the nozzle. The nonlinear dynamic inversion technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs have also been carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, an extended Kalman Filter based state estimation design has been carried out both to filter out the process and sensor noises as well as to make the control design operate based on output feedback. Promising simulation results indicate that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Re-g. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Re-g and eventually develop shorter breakup lengths at higher values of Re-g. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Re-g. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Folded Dynamic Programming (FDP) is adopted for developing optimalnreservoir operation policies for flood control. It is applied to a case study of Hirakud Reservoir in Mahanadi basin, India with the objective of deriving optimal policy for flood control. The river flows down to Naraj, the head of delta where a major city is located and finally joins the Bay of Bengal. As Hirakud reservoir is on the upstream side of delta area in the basin, it plays an important role in alleviating the severity of the flood for this area. Data of 68 floods such as peaks of inflow hydrograph, peak of outflow from reservoir during each flood, peak of flow hydrograph at Naraj and d/s catchment contribution are utilized. The combinations of 51, 54, 57 thousand cumecs as peak inflow into reservoir and 25.5, 20, 14 thousand cumecs respectively as,peak d/s catchment contribution form the critical combinations for flood situation. It is observed that the combination of 57 thousand cumecs of inflow into reservoir and 14 thousand cumecs for d/s catchment contribution is the most critical among the critical combinations of flow series. The method proposed can be extended to similar situations for deriving reservoir operating policies for flood control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of steady-state flows in radiation-gas-dynamics, when radiation pressure is negligible in comparison with gas pressure, can be reduced to the study of a single first-order ordinary differential equation in particle velocity and radiation pressure. The class of steady flows, determined by the fact that the velocities in two uniform states are real, i.e. the Rankine-Hugoniot points are real, has been discussed in detail in a previous paper by one of us, when the Mach number M of the flow in one of the uniform states (at x=+∞) is greater than one and the flow direction is in the negative direction of the x-axis. In this paper we have discussed the case when M is less than or equal to one and the flow direction is still in the negative direction of the x-axis. We have drawn the various phase planes and the integral curves in each phase plane give various steady flows. We have also discussed the appearance of discontinuities in these flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of discrete ordinates, in conjunction with the modified "half-range" quadrature, is applied to the study of heat transfer in rarefied gas flows. Analytic expressions for the reduced distribution function, the macroscopic temperature profile and the heat flux are obtained in the general n-th approximation. The results for temperature profile and heat flux are in sufficiently good accord both with the results of the previous investigators and with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate mass flow measurement is very important in various monitoring and control applications. This paper proposes a novel method of fluid flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump. The pressure drop due to the flow is balanced by a feedback control loop. This is a null-deflection type of measurement. As the insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. The implementation and design of such a unit are discussed. The system is modeled and simulated using the bond graph technique and it is experimentally validated. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding material flow in friction stir welding is important for production of sound dissimilar metal welding that control the intermixing of two alloys being welded and consequent formation of new constituents which influences the weld properties. In the present experimental investigation material flow patterns are visualised using dissimilar and similar aluminium alloys using a simple innovative ,experiment. The experimental results reveal that only a portion of material transported from the leading edge undergoes chaotic flow and the remaining is deposited systematically in the trailing edge of the weld. Using this information it is shown that the formation of a friction stir welding defect, joint line remnant, does not occur only when the weld interface is on the advancing side. The material flow visualisation study has been utilised to analyse the mechanism of weld formation and its usefulness in improving fatigue properties and for dissimilar metal welds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modern system theory based nonlinear control design is discussed in this paper for successful operation of an air-breathing engine operating at supersonic speed. The primary objective of the control design of such an air-breathing engine is to ensure that the engine dynamically produces the thrust that tracks a commanded value of thrust as closely as possible by regulating the fuel flow to the combustion system. However, since the engine operates in the supersonic range, an important secondary objective is to manage the shock wave configuration in the intake section of the engine which is manipulated by varying the throat area of the nozzle. A nonlinear sliding mode control technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs are also carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, to filter out the sensor and process noises and to estimate the states for making the control design operate based on output feedback, an Extended Kalman Filter based state estimation design is also carried out. The promising simulation results suggest that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing engine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study for transient temperature response and pressure drop in a randomly packed bed at high Reynolds numbers is presented.The packed bed is used as a compact heat exchanger along with a solid-propellant gas generator, to generate room-temperature gases for use in control actuation, air bottle pressurization, etc. Packed beds of lengths 200 and 300 mm were characterized for packing-sphere-based Reynolds numbers ranging from 0.8 x 10(4) to 8.5 x 10(4).The solid packing used in the bed consisted of phi 9.5 mm steel spheres. The bed-to-particle diameter ratio was with the average packed-bed porosity around 0.43. The inlet flow temperature was unsteady and a mesh of spheres was used at either end to eliminate flow entrance and exit effects. Gas temperature and pressure were measured at the entry, exit,and at three axial locations along centerline in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. A correlation based on the ratio of pressure drop and inlet-flow momentum (Euler number) exhibited an asymptotically decreasing trend with increasing Reynolds number. Axial conduction across the packed bed was found to he negligible in the investigated Reynolds number range. The enthalpy absorption rate to solid packing from hot gases is plotted as a function of a nondimensional time constant for different Reynolds numbers. A longer packed bed had high enthalpy absorption rate at Reynolds number similar to 10(4), which decreased at Reynolds number similar to 10(5). The enthalpy absorption plots can be used for estimating enthalpy drop across packed bed with different material, but for a geometrically similar packing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.