260 resultados para Focal mechanism
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
The addition reaction of alcohols to substituted phenylisothiocyanates is found to be a second-order reaction. The reaction is catalysed by triethylamine. First-order rate constants of the addition reaction have been determined in excess of ethanol, for a number of substituted phenylisothiocyanates and the rate data give a satisfactory linear correlation with Hammett σ constants of groups. While the energies of activation vary randomly with substitution, the entropies of activation bear a linear relationship to the energies of activation. Infra-red spectra indicate that the thiourethanes which are the products of the addition reaction exist in the thioamide form. The most prominent resonance form which can satisfactorily explain both the kinetic and infrared data, has been suggested.
Resumo:
The particle size and crystallite size of anatase increase markedly in the region of the crystal structure transformation. The unit cell of anatase seems to expand prior to the transformation to rutile. This expansion has been attributed to a displacive transformation of the type defined by Buerger. Smaller particle size and larger surface area seem to favour the transformation. The kinetics of the transformation of anatase prepared by the hydrolysis of titanium sulphate have been studied at different temperatures and are found to be considerably different from the kinetics of the transformation of pure anatase. The transformation becomes immeasurably slow below ∼695 ± 10°C compared to ∼610°C for pure anatase. An induction period is observed in the transformation of anatase obtained from sulphate hydrolysis and the duration decreases with increase in temperature. The activation energy is ∼120 kcal/mole, a value higher than that for the pure anatase-rutile transformation. The results have been interpreted in terms of the relative rates of nucleation and propagation processes. The activation energy for the nucleation process seems to be much larger than for the propagation process. The kinetics of the transformation of anatase samples doped with different amounts of sulphate ion impurity have also been studied and the transformation is found to be progressively decelerated with increase in the impurity concentration. The energy of activation for the transformation appears to increase progressively with increase in impurity concentration.
Resumo:
The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.
Resumo:
The transport of glycine in vitro into the silk glands of the silkworm has been studied. Glycine accumulates inside the tissue to a concentration higher than that present outside, indicating an active transport mechanism. The kinetics of uptake show a biphasic curve and two apparent Km values for accumulation, 0.33 mM and 5.00 mM. The effect of inhibitors on the energy metabolism of glycine transport is inconclusive. Exchange studies indicate the existence of two pools inside the gland, one that is easily removed by exchange and osmotic shock, and the other which is not. The results obtained conform with the carrier model of Britten and McClure concerning the amino-acid pool in E. coli.
Resumo:
Hydroxylation of aromatic compounds was observed in NADH-phenazine methosulfate-O2 model system known to generate superoxide anions (Image ). Addition of superoxide dismutase prepared from ovine erythrocytes to this hydroxylating system resulted in complete inhibition, suggesting an involvement of Image in aromatic hydroxylations.
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
We discuss symmetries and scenarios leading to quasi-degenerate neutrinos in type I seesaw models. The existence of degeneracy in the present approach is not linked to any specific structure for the Dirac neutrino Yukawa coupling matrix y(D) and holds in general. Basic input is the application of the minimal flavour violation principle to the leptonic sector. Generalizing this principle, we assume that the structure of the right-handed neutrino mass matrix is determined by y(D) and the charged lepton Yukawa coupling matrix y(l) in an effective theory invariant under specific groups G(F) contained in the full symmetry group of the kinetic energy terms. G(F) invariance also leads to specific structure for the departure from degeneracy. The neutrino mass matrix (with degenerate mass m(0)) resulting after seesaw mechanism has a simple form Mv approximate to m(0)(I - py(l)y(l)(T)) in one particular scenario based on supersymmetry. This form is shown tolead to correct description of neutrino masses and mixing angles. The thermal leptogenesis after inclusion of flavour effects can account for the observed baryon asymmetry of the universe within the present scenario. Rates for lepton flavour violating processes can occur at observable levels in the supersymmetric version of the scenario. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The binding of a 14 kDa beta-galactoside animal lectin to splenocytes has been studied in detail. The binding data show that there are two classes of binding sites on the cells for the lectin: a high-affinity site with a K-a ranging from 1.1 x 10(6) to 5.1 x 10(5) M-1 and a low affinity binding site with a K-a ranging from 7.7 x 10(4) to 3.4 x 10(4) M-1 The number of receptors per cell for the high- and low-affinity sites is 9 +/- 3 x 10(6) and 2.5 +/- 0.5 x 10(6) respectively. The temperature dependence of the K value yielded the thermodynamic parameters. The energetics of this interaction shows that, although this interaction is essentially enthalpically driven (Delta H - 21 kJ lambda mol(-1)) for the high-affinity sites, there is a very favorable entropy contribution to the free energy of this interaction (-T Delta S - 17.5 Jmol(-1)), suggesting that hydrophobic interaction may also be playing a role in this interaction. Lactose brought about a 20% inhibition of this interaction, whereas the glycoprotein asialofetuin brought about a 75 % inhibition, suggesting that complex carbohydrate structures are involved in the binding of galectin-1 to splenocytes, Galectin-1 also mediated the binding and adhesion of splenocytes to the extracellular matrix glycoprotein laminin, suggesting a role for it in cell-matrix interactions. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
We applied our previous theory of high temperature superconductivity to Bi and Tl compounds in this paper. The theory involves the role of electron pairs in the spin singlet of species Xequal-or-greater, slanted (Bi3+ (6S2), Tl(6S2) etc.) and their virtual excited state X0 (Bi5+ (6s0), Tl3+ (6s0), etc.) in the pairing interaction of quasiholes. Bi and Tl species provide additional channels of kind (Xequal-or-greater, slanted left angle bracket X0) owing to the charge fluctuations. We treated the two states of these species like a two-level Bose system. We used the pseudospin formalism to calculate the expression for the critical temperature in this paper. We also calculated numerically the value of Tc for Bi and Tl compounds and found a good agreement between theory and experiment.