83 resultados para First-motion polarization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a liquid is progressively supercooled toward its glass transition temperature, an intriguing weakening of the wavenumber (q) dependence of the structural relaxation time tau(q) in the intermediate-to-large q limit is observed both in experiments and simulation studies. Neither continuous Brownian diffusive dynamics nor discontinuous activated events can alone explain the anomalous wavenumber dependence. Here we use our recently developed theory that unifies the mode coupling theory for continuous dynamics, with the random first order transition theory treatment of activated discontinuous motion as a nucleationlike instanton process to understand the wavenumber dependence of density relaxation. The predicted smooth change in mechanism of relaxation from diffusive to activated, in the crossover regime, is wavevector dependent and appears to be responsible for the observed subquadratic,nalmost linear, q dependence of the relaxation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial bilayered thin films composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb (Mg1/3Nb2/3)O3-0.3(PbTiO3) were fabricated on LaAlO3 (100) substrates by pulsed laser ablation. Ferroelectric, ferromagnetic and magneto-dielectric characterizations performed earlier indicated the possible existence of strain-mediated magneto-electric coupling in these biferroic heterostructures. In order to investigate their true remnant polarization characteristics, usable in devices, room-temperature polarization versus electric field, positive-up negative-down (PUND) pulse polarization studies and remnant hysteresis measurements were carried out. The PUND and remnant hysteresis measurements revealed the significant contribution of the non-remnant component in the observed polarization hysteresis response of these heterostructures. (C) 2010 Published by Elsevier Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectrum of rubidium iodide has been recorded for the first time using the resonance radiation of mercury (λ 2537 ) as the exciter. The frequencies of the 24p limiting modes (p = 2, the number of non-equivalent atoms in the unit cell), postulated by Raman in 1943, which correspond to the frequencies from the critical points Γ, L and X, have been worked out using the shell model of Cochran, taking into account the nearest and the next-nearest neighbour short-range interactions and the polarization of both the ions. The observed Raman lines have been assigned to the overtones and the combinations of the phonon branches from Γ, L and X.