210 resultados para Electronic localization
Resumo:
Although it is believed that there is strong hybridization between the Cu(3d) and O(2p) orbitals in the layered cuprates and that the parent compounds such as La2CuO4 are charge-transfer gap insulators, very few models consider the Cu---O charge-transfer energy, Δ, or the hybridization strength, tpd, to be the important factors responsible for the superconductivity of these materials. Based on the crucial experimental observation that the relative intensity of the features in Cu(2p) photoemission of several families of cuprates varies systematically with the hole concentration, nh, we have been able to show that both these properties vary smoothly with Δ /tpd. More importantly, we show that the electronic polarizability of the CuO2 sheets, α , is sufficiently large to favour hole pairing and that the value α also depends on Δ/tpd. Both nh and α increase smoothly with decreasing Δ /tpd. Considering that the maximum Tc in the various cuprate families containing the same number of CuO2 sheets occurs around the same nh value (e.g., nh≈ 0.2 in cuprates with two CuO2 sheets). The present study demonstrates how Δ /tpd, α and such chemical bonding characteristics have an important bearing on the superconducting properties of the cuprates.
Resumo:
The free-base octabromotetraphenylporphyrin (H2OBP) has been prepared by a novel bromination reaction of (meso-tetraphenylporphyrinato)copper(II). The metal [V(IV)O, Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II), Pt(II)] derivatives exhibit interesting electronic spectral features and electrochemical redox properties. The electron-withdrawing bromine substituents at the pyrrole carbons in H2OBP and M(OBP) derivatives produce remarkable red shifts in the Soret (50 nm) and visible bands (100 nm) of the porphyrin. The low magnitude of protonation constants (pK3 = 2.6 and pK4 = 1.75) and the large red-shifted Soret and visible absorption bands make the octabromoporphyrin unique. The effect of electronegative bromine substituents at the peripheral positions of the porphyrin has been quantitatively analyzed by using the four-orbital approach of Gouterman. A comparison of MO parameters of MOBP derivatives with those of the meso-substituted tetraphenylporphyrin (M(TPP)) and unsubstituted porphine (M(P)) derivatives provides an explanation for the unusual spectral features. The configuration interaction matrix element of the M(OBP) derivatives is found to be the lowest among the known substituted porphyrins, indicating delocalization of ring charge caused by the increase in conjugation of p orbitals of the bromine onto the ring orbitals. The electron-transfer reactivities of the porphyrins have been dramatically altered by the peripheral bromine substituents, producing large anodic shifts in the ring and metal-centered redox potentials. The increase in anodic shift in the reduction potential of M(OBP)s relative to M(TPP)s is found to be large (550 mV) compared to the shift in the oxidation potential (300 mV). These shifts are interpreted in terms of the resonance and inductive interactions of the bromine substituents.
Resumo:
A method of source localization in shallow water, based on subspace concept, is described. It is shown that a vector representing the source in the image space spanned by the direction vectors of the source images is orthogonal to the noise eigenspace of the covariance matrix. Computer simulation has shown that a horizontal array of eight sensors can accurately localize one or more uncorrelated sources in shallow water dominated by multipath propagation.
Resumo:
Starting from readily available norbornenobenzoquinone 7 and employing a photothermal metathesis reaction as the main strategy, novel "roofed" polyquinane bisenones 3 and 13 have been synthesized. Among these, the former is potentially serviceable for further elaboration to dodecahedrane 1. Catalytic hydrogenation of 3 provided the dione 12, which fully inscribes the circumference of dodecahedrane sphere. The "roofed" C-16-bisenone 3 has been successfully annulated to C19-bisenone 24 and C19-trisenone 26 by employing the Greene methodology and Pauson-Khand reaction, respectively. The molecular structures of 3 and 13 were computed using molecular mechanics and semiempirical MO methods. The nonbonded distances between the double bonds vary strongly with the method employed. The interactions between the pi-MO's were, therefore, probed by means of photoelectron (PE) spectroscopy. Comparison with the PE spectra of a series of model systems with increasing complexity enabled an unambiguous assignment of the observed peaks. The symmetric and antisymmetric combinations of the pi-MO's of the enone moieties of 3 and 13 show large splittings, characteristic of propano-bridged systems in which through-space and through-bond effects act in concert.
Resumo:
A new algorithm based on signal subspace approach is proposed for localizing a sound source in shallow water. In the first instance we assumed an ideal channel with plane parallel boundaries and known reflection properties. The sound source is assumed to emit a broadband stationary stochastic signal. The algorithm takes into account the spatial distribution of all images and reflection characteristics of the sea bottom. It is shown that both range and depth of a source can be measured accurately with the help of a vertical array of sensors. For good results the number of sensors should be greater than the number of significant images; however, localization is possible even with a smaller array but at the cost of higher side lobes. Next, we allowed the channel to be stochastically perturbed; this resulted in random phase errors in the reflection coefficients. The most singular effect of the phase errors is to introduce into the spectral matrix an extra term which may be looked upon as a signal generated coloured noise. It is shown through computer simulations that the signal peak height is reduced considerably as a consequence of random phase errors.
Resumo:
The temperature variation in the insulation around an electronic component, mounted on a horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed. The effect of mixed convection and two different types of insulation are considered. The mass, momentum and energy conservation equations in the fluid and conduction equation in the insulation are solved using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation within the insulation becomes important when the thermal conductivity of the insulation is less than ten times the thermal conductivity of the cooling medium.
Resumo:
Measurements of the electrical resistivity of thin potassium wires at temperatures near 1 K have revealed a minimum in the resistivity as a function of temperature. By proposing that the electrons in these wires have undergone localization, albeit with large localization length, and that inelastic-scattering events destroy the coherence of that state, we can explain both the magnitude and shape of the temperature-dependent resistivity data. Localization of electrons in these wires is to be expected because, due to the high purity of the potassium, the elastic mean free path is comparable to the diameters of the thinnest samples, making the Thouless length lT (or inelastic diffusion length) much larger than the diameter, so that the wire is effectively one dimensional. The inelastic events effectively break the wire into a series of localized segments, whose resistances can be added to obtain the total resistance of the wire. The ensemble-averaged resistance for all possible segmented wires, weighted with a Poisson distribution of inelastic-scattering lengths along the wire, yields a length dependence for the resistance that is proportional to [L3/lin(T)], provided that lin(T)?L, where L is the sample length and lin(T) is some effective temperature-dependent one-dimensional inelastic-scattering length. A more sophisticated approach using a Poisson distribution in inelastic-scattering times, which takes into account the diffusive motion of the electrons along the wire through the Thouless length, yields a length- and temperature-dependent resistivity proportional to (L/lT)4 under appropriate conditions. Inelastic-scattering lifetimes are inferred from the temperature-dependent bulk resistivities (i.e., those of thicker, effectively three-dimensional samples), assuming that a minimum amount of energy must be exchanged for a collision to be effective in destroying the phase coherence of the localized state. If the dominant inelastic mechanism is electron-electron scattering, then our result, given the appropriate choice of the channel number parameter, is consistent with the data. If electron-phason scattering were of comparable importance, then our results would remain consistent. However, the inelastic-scattering lifetime inferred from bulk resistivity data is too short. This is because the electron-phason mechanism dominates in the inelastic-scattering rate, although the two mechanisms may be of comparable importance for the bulk resistivity. Possible reasons why the electron-phason mechanism might be less effective in thin wires than in bulk are discussed.
Resumo:
We observe a sharp feature in the ultra-low-temperature magnetoconductivity of degenerately doped Ge:Sb at H∼25 kOe, which is robust up to at least three times the critical density for the insulator-metal transition. This field corresponds to a low-energy scale characteristic of the special nature of antimony donors in germanium. Its presence and sensitivity to uniaxial stress confirm the notion of metallic impurity bands in doped germanium.
Resumo:
The Madelung potential and formation energy of the superconducting compound YBa2Cu3O7 have been computed for hole localization at different sites in the crystal. The cases considered include Cu3+ ion at Cu(1) and Cu(2) sites, O− ion at O(1), O(2), O(3) and O(4) sites and combinations of O− and Cu3+ ions at O(4) and Cu(1) and O(2,3) and Cu(2) sites. The two lowest-energy configurations correspond to Cu3+ ion at Cu(1) site and O− ion at O(4) site. The difference in formation energy between those configurations is relatively small. The next preferred configuration corresponds to simultaneous partial localization of the hole at Cu (1) site and O(1) site. Other configurations are much less stable. The results suggest a resonating or fluctuating valence model for YBa2Cu3O7.
Resumo:
We report the soft-X-ray absorption spectra at the oxygen K-edge of La1-xSrxCoO3-δ (x = 0.0, 0.1, 0.2, 0.3 and 0.4) series with experimentally determined δ values. We show that the doping of holes by replacing La3+ with Sr2+ induces states within the band gap of the insulating undoped compound for small x and these doped states have a very substantial oxygen 2p character. This indicates that the insulating compounds belong to the charge transfer insulator regime. With increasing Sr content, the doped states broaden into a band overlapping the top of the primarily oxygen p-derived band, leading to an insulator-metal transition at x ≥ 0.2.
Resumo:
Electronic absorption spectroscopy and fluorescence spectroscopy have been used to investigate the interaction of the fullerenes C60 and C70 with diethylaniline, and with aromatic solvents such as benzene. C60 interacts weakly with aromatic amines in the ground state while C70 does not interact at all. Steady state fluorescence emission and lifetime measurements show that both C60 and C70 form excited state complexes (exciplexes) with the amines in non-aromatic solvents such as methylcyclohexane, but not in benzene. In benzene, only fluorescence quenching is observed due to the interaction between the π systems of the aromatic solvent and the fullerene in the ground state. This is also borne out by the systematic study of solvent effects on the absorption and emission spectra of the fullerenes.
Resumo:
The electronic excitations and fluorescence of conjugated polymers are related to large or small alternation ? of the transfer integrals t(1 ± ?) along the backbone. The fluorescence of polysilanes (PSs) and poly (para-phenylenevinylene (PPV) is linked to large ?, which places the one-photon gap Eg below the lowest two-photon gap Ea and reduces distortions due to electron-phonon (e-p) coupling. In contrast to small ? not, vert, similar 0.1 in ?-conjugated polymers, such as polyacetylene (PA), para-conjugated phenyls lead to an extended ?-system with increased alternation, to states localized on each ring and to charge-transfer excitations between them. Surprisingly good agreement is found between semiempirical parametric method 3 (PM3) bond lengths and exact Pariser-Parr-Pople (PPP) ?-bond orders for trans-stilbene, where the PPV bipolarons are confined to two phenyls. Stilbene spectra are consistent with increased alternation and small e-p distortions.
Resumo:
We have investigated the electronic structure of well-characterized samples of La1-xSrxFeO3 (x=0.0�0.4) by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy, bremsstrahlung isochromat (BI) spectroscopy, and Auger electron spectroscopy. We find systematic behavior in the occupied and unoccupied density of states reflecting changes in the electronic structure on hole doping via Sr substitution as well as providing estimates for different interaction strengths. The spectral features, particularly of the unoccupied states obtained from BI spectra, indicate the probable reason for the absence of an insulator-metal transition in this series. Analysis of the Auger spectra provides the estimates of the on-site effective Coulomb interaction strengths in Fe 3d and O 2p states. The parameter values for the bare charge-transfer energy ? and the Fe 3d�O 2p hybridization strength t? for LaFeO3 are obtained from an analysis of the Fe 2p core-level XPS in terms of a model many-body calculation. We discuss the character of the ground state in LaFeO3 as well as the nature of the doped hole states in La1-xSrxFeO3, based on these parameter values.