106 resultados para Electric engineering.
Resumo:
The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.
Resumo:
In developing countries high rate of growth in demand of electric energy is felt, and so the addition of new generating units becomes necessary. In deregulated power systems private generating stations are encouraged to add new generations. Finding the appropriate location of new generator to be installed can be obtained by running repeated power flows, carrying system studies like analyzing the voltage profile, voltage stability, loss analysis etc. In this paper a new methodology is proposed which will mainly consider the existing network topology into account. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes.This index is used for ranking significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on a sample 7-bus system, EHV equivalent 24-bus system and IEEE 39 bus system are presented for illustration purpose.
Resumo:
A new technique for reducing the torque pulsations in a conventional current source inverter fed induction motor drive is presented. This does not attempt to improve the current waveforms, but modifies the airgap MMF directly. This is based on the use of a motor with two sets of balanced phase windings, with a 30 electrical degree phase difference between them, and each set being fed from a conventional current source inverter. The two inverters are further connected in series so that they can operate from the same current source. As a consequence of this arrangement, the voltage rating of the components of each inverter is reduced, along with reduced torque ripple. This scheme has been experimentally verified and compared with the performance of a conventional scheme.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
This paper presents a general hardware scheme for testing protective relays using microprocessor based systems. The microprocessor simulates the relaying signals for test purpose and monitors the relay performance. Based on the proposed hardware, a teat procedure for directional overcurrent relays is presented in detail. Typical test results of various routine tests conducted on a commercial single phase directional over-current relay clearly demonstrate the efficacy of the proposed technique for conducting tests on commercial relays.
Resumo:
he notion of the gravity-induced electric field has been applied to an entire self-gravitating massive body. The resulting electric polarization of the otherwise neutral body, when taken in conjunction with the latter's rotation, is shown to generate an axial-magnetic field of the right type and order of magnitude for certain astrophysical objects. In the present treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approximation while the electrodynamics of the continuous medium is treated in the nonrelativistic approximation.
Resumo:
An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (Image ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
Invariant magneto-electric coefficients and invariant piezomagnetic coefficients are obtained for all the magnetic crystal classes.
Resumo:
The paper presents a unified picture of the structure of steady one-dimensional shock waves in partially ionized argon in the absence of external electric and magnetic fields. The study is based on a two-temperature three-fluid continuum approach using the Navier-Stokes equations as a model and taking account of nonequilibrium ionization. The analysis of the governing equations is based on the method of matched asymptotic expansions and leads to three layers: (1) a broad thermal layer dominated by electron thermal conduction; (2) an atom-ion shock structured by heavy-particle collisional dissipative mechanisms; and (3) an ionization relaxation layer in which electron-atom inelastic collisions dominate.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of infinite simultaneous equations encountered in solving for the electric field of a periodic electrode structure.
Resumo:
In the face of increasing CO2 emissions from conventional energy (gasoline), and the anticipated scarcity of Crude oil, a worldwide effort is underway for cost-effective renewable alternative energy sources. Here, we review a simple line of reasoning: (a) geologists claim that Much crude oil comes from diatoms; (b) diatoms do indeed make oil; (c) agriculturists Claim that diatoms could make 10-200 times as much oil per hectare as oil seeds; and (d) therefore, sustainable energy could be made from diatoms. In this communication, we propose ways of harvesting oil from diatoms, using biochemical engineering and also a new solar panel approach that utilizes genomically modifiable aspects of diatom biology, offering the prospect of ``milking'' diatoms for Sustainable energy by altering them to actively secrete oil products. Secretion by and milking of diatoms may provide a way around the puzzle of how to make algae that both grow quickly and have a very high oil content.