96 resultados para Ceramic tests
Resumo:
In today's API-rich world, programmer productivity depends heavily on the programmer's ability to discover the required APIs. In this paper, we present a technique and tool, called MATHFINDER, to discover APIs for mathematical computations by mining unit tests of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code to compute the expression by mapping its subexpressions to API method calls. For each subexpression, MATHFINDER searches for a method such that there is a mapping between method inputs and variables of the subexpression. The subexpression, when evaluated on the test inputs of the method under this mapping, should produce results that match the method output on a large number of tests. We implemented MATHFINDER as an Eclipse plugin for discovery of third-party Java APIs and performed a user study to evaluate its effectiveness. In the study, the use of MATHFINDER resulted in a 2x improvement in programmer productivity. In 96% of the subexpressions queried for in the study, MATHFINDER retrieved the desired API methods as the top-most result. The top-most pseudo-code snippet to implement the entire expression was correct in 93% of the cases. Since the number of methods and unit tests to mine could be large in practice, we also implement MATHFINDER in a MapReduce framework and evaluate its scalability and response time.
Resumo:
Today's programming languages are supported by powerful third-party APIs. For a given application domain, it is common to have many competing APIs that provide similar functionality. Programmer productivity therefore depends heavily on the programmer's ability to discover suitable APIs both during an initial coding phase, as well as during software maintenance. The aim of this work is to support the discovery and migration of math APIs. Math APIs are at the heart of many application domains ranging from machine learning to scientific computations. Our approach, called MATHFINDER, combines executable specifications of mathematical computations with unit tests (operational specifications) of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code comprised of API methods to compute the expression by mining unit tests of the API methods. We present a sequential version of our unit test mining algorithm and also design a more scalable data-parallel version. We perform extensive evaluation of MATHFINDER (1) for API discovery, where math algorithms are to be implemented from scratch and (2) for API migration, where client programs utilizing a math API are to be migrated to another API. We evaluated the precision and recall of MATHFINDER on a diverse collection of math expressions, culled from algorithms used in a wide range of application areas such as control systems and structural dynamics. In a user study to evaluate the productivity gains obtained by using MATHFINDER for API discovery, the programmers who used MATHFINDER finished their programming tasks twice as fast as their counterparts who used the usual techniques like web and code search, IDE code completion, and manual inspection of library documentation. For the problem of API migration, as a case study, we used MATHFINDER to migrate Weka, a popular machine learning library. Overall, our evaluation shows that MATHFINDER is easy to use, provides highly precise results across several math APIs and application domains even with a small number of unit tests per method, and scales to large collections of unit tests.
Resumo:
In this study, we report the gas sensing behavior of BiNbO4 nanopowder prepared by a low temperature simple solution-based method. Before the sensing behaviour study, the as-synthesized nanopowder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-diffuse reflectance spectroscopy, impedance analysis, and surface area measurement. The NH3 sensing behavior of BiNbO4 was then studied by temperature modulation (50-350 degrees C) as well as concentration modulation (20-140 ppm). At the optimum operating temperature of 325 degrees C, the sensitivity was measured to be 90%. The cross-sensitivity of as-synthesized BiNbO4 sensor was also investigated by assessing the sensing behavior toward other gases such as hydrogen sulphide (H2S), ethanol (C2H5OH), and liquid petroleum gas (LPG). Finally, selectivity of the sensing material toward NH3 was characterized by observing the sensor response with gas concentrations in the range 20-140 ppm. The response and recovery time for NH3 sensing at 120 ppm were about 16 s and about 17 s, respectively.
Resumo:
There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.
Resumo:
Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.
Resumo:
We show that copper-matrix composites that contain 20 vol. % of an in situ processed, polymer-derived, ceramic phase constituted from Si-C-N have unusual friction-and-wear properties. They show negligible wear despite a coefficient of friction (COF) that approaches 0.7. This behavior is ascribed to the lamellar structure of the composite such that the interlamellar regions are infused with nanoscale dispersion of ceramic particles. There is significant hardening of the composite just adjacent to the wear surface by severe plastic deformation.
Resumo:
The estimation of strength and stiffness of reinforced aggregates is very important for the design and construction of reinforced unpaved/paved road sections. This paper presents the experimental results from static and cyclic triaxial tests carried out on granular subbase samples reinforced with multiple layers of geogrid reinforcement. Aggregates of different size ranges were mixed in calculated proportions by weight to obtain the gradation specified for rural roads. Triaxial samples of 300 mm diameter and 600 mm height were prepared using this sampled aggregate. The strength and stiffness characteristics of this aggregate reinforced with geogrids at different elevations were determined from static and cyclic triaxial tests. Triaxial tests were also carried out on geocell encased aggregates, and the results are compared. From the experimental results it is observed that reinforced systems carried more stresses than unreinforced systems at the same strain level. The beneficial effect increased with increase in the quantity of reinforcement, whereas for geocell reinforcement, the advantage was evident only at higher strains. (C) 2014 American Society of Civil Engineers.
Resumo:
Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report the origin of room temperature weak ferromagnetic behavior of polycrystalline Pb(Fe2/3W1/3)O-3 (PFW) powder. The structure and magnetic properties of the ceramic powder prepared by a Columbite method were characterized by X-ray and neutron diffraction, Mossbauer spectroscopy and magnetization measurements. Rietveld analysis of diffraction data confirm the formation of single phase PFW, without traces of any parasitic pyrochlore phase. PFW was found to crystallize in the cubic structure at room temperature. The Rietveld refinement of neutron diffraction data measured at room temperature confirmed the G-type antiferromagnetic structure of PFW in our sample. However, along with the antiferromagnetic (AFM) ordering of the Fe spins, we have observed the existence of weak ferromagnetism at room temperature through: (i) a clear opening of hysteresis (M-H) loop, (ii) bifurcation of the field cooled and zero-field cooled susceptibility; supported by Mossbauer spectroscopy results. The P-E loop measurements showed a non-linear slim hysteresis loop at room temperature due to the electronic conduction through the local inhomogeneities in the PFW crystallites and the inter-particle regions. By corroborating all the magnetic measurements, especially the spin glass nature of the sample, with the conduction behavior of the sample, we report here that the observed ferromagnetism originates at these local inhomogeneous regions in the sample, where the Fe-spins are not perfectly aligned antiferromagnetically due to the compositional disordering. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
By using six 4.5 Hz geophones, surface wave tests were performed on four different sites by dropping freely a 65 kg mass from a height of 5 m. The receivers were kept far away from the source to eliminate the arrival of body waves. Three different sources to nearest receiver distances (S), namely, 46 m, 56 m and 66 m, were chosen. Dispersion curves were drawn for all the sites. The maximum wavelength (lambda(max)), the maximum depth (d(max)) up to which exploration can be made and the frequency content of the signals depends on the site stiffness and the value of S. A stiffer site yields greater values of lambda(max) and d(max). For stiffer sites, an increase in S leads to an increase in lambda(max). The predominant time durations of the signals increase from stiffer to softer sites. An inverse analysis was also performed based on the stiffness matrix approach in conjunction with the maximum vertical flexibility coefficient of ground surface to establish the governing mode of excitation. For the Site 2, the results from the surface wave tests were found to compare reasonably well with that determined on the basis of cross boreholes seismic tests. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).
Resumo:
Subtle concurrency errors in multithreaded libraries that arise because of incorrect or inadequate synchronization are often difficult to pinpoint precisely using only static techniques. On the other hand, the effectiveness of dynamic race detectors is critically dependent on multithreaded test suites whose execution can be used to identify and trigger races. Usually, such multithreaded tests need to invoke a specific combination of methods with objects involved in the invocations being shared appropriately to expose a race. Without a priori knowledge of the race, construction of such tests can be challenging. In this paper, we present a lightweight and scalable technique for synthesizing precisely these kinds of tests. Given a multithreaded library and a sequential test suite, we describe a fully automated analysis that examines sequential execution traces, and produces as its output a concurrent client program that drives shared objects via library method calls to states conducive for triggering a race. Experimental results on a variety of well-tested Java libraries yield 101 synthesized multithreaded tests in less than four minutes. Analyzing the execution of these tests using an off-the-shelf race detector reveals 187 harmful races, including several previously unreported ones.
Resumo:
In the recent years there has been a considerable increase in demand for the electrical power requirement in our country. Presently the transmission system voltages has increased to 765 kV ac and 800kV dc, keeping in view of the future demand experimentation and simulation studies for 1200 kV ac and 1100kV dc transmission are under progress. In the present study an attempt is made to compute the surface potential, electric field across the string of ceramic disc insulators used for 1200kV ac systems. The studies are carried out under normal, polluted conditions and for the case of insulator string containing faulty discs. A computer code using surface charge simulation method (SCSM) is developed for the present analysis. Also a new technique which enhances the surface potential and electric field strength for the existing ceramic disc insulators is presented.
Resumo:
Fiction stir processing (FSP) is a solid state technique used for material processing. Tool wear and the agglomeration of ceramic particles have been serious issues in FSP of metal matrix composites. In the present study, FSP has been employed to disperse the nanoscale particles of a polymer-derived silicon carbonitride (SiCN) ceramic phase into copper by an in-situ process. SiCN cross linked polymer particles were incorporated using multi-pass ESP into pure copper to form bulk particulate metal matrix composites. The polymer was then converted into ceramic through an in-situ pyrolysis process and dispersed by ESP. Multi-pass processing was carried out to remove porosity from the samples and also for the uniform dispersion of polymer derived ceramic particles. Microstructural observations were carried out using Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) of the composite. The results indicate a uniform distribution of similar to 100 nm size particles of the ceramic phase in the copper matrix after ESP. The nanocomposite exhibits a five fold increase in microhardness (260HV(100)) which is attributed to the nano scale dispersion of ceramic particles. A mechanism has been proposed for the fracturing of PDC particles during multi pass FSP. (C) 2015 Elsevier Ltd. All rights reserved