223 resultados para CHEMICAL SPECIATION
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report a detailed investigation of resistance noise in single layer graphene films on Si/SiO2 substrates obtained by chemical vapor deposition (CVD) on copper foils. We find that noise in these systems to be rather large, and when expressed in the form of phenomenological Hooge equation, it corresponds to Hooge parameter as large as 0.1-0.5. We also find the variation in the noise magnitude with the gate voltage (or carrier density) and temperature to be surprisingly weak, which is also unlike the behavior of noise in other forms of graphene, in particular those from exfoliation. (C) 2010 American Institute of Physics. doi:10.1063/1.3493655]
Resumo:
Heteronuclear multiple-quantum coherence relaxation rate are calculated for the individual transitions of the S spin in an AIS nuclear spin system assuming that the heteronucleus (S spin) has relaxation contributions from both intramolecular dipole-dipole and chemical shift anisotropy relaxation. The individual multiplet components of the heteronuclear zero- and double-quantum coherences are shown to have different transverse relaxation rates. The cross-correlation between the two relaxation mechanisms is shown to be the dominant cause of the calculated differential line broadening. Experimental data are presented using as an example a uniformly 15N labelled sample of human epidermal growth factor.
Resumo:
Chemical shifts of K absorption discontinuities, Delta E, of several manganese, iron and cobalt oxides with the metal in the formal oxidation states between +2 and +4, have been measured. These data, together with data in the literature on other compounds of these metals, can be fitted into the expression Delta E=aq+bq2, where q is the effective atomic charge on the metal. Theoretical considerations also support this functional relationship between Delta E and q.
Resumo:
29Si chemical shifts in a wide variety of silicates in crystalline, glassy and gel states have been related to a parameter, P, which takes into account the electronegativity and the structural description of the silicate units as well as the ionic potential of the modifier cation. The relation, δ(ppm)=28.4 [1−exp(−P)]−110.5, besides having predictive value, satisfactorily accounts for all the available chemical-shifts data on silicates and shows the right kind of limiting behaviour, with δ approaching the Q0 value at large P.
Resumo:
The high-temperature superconductors are complex oxides, generally containing two-dimensional CuO2 sheets. Various families of the cuprate superconductors are described, paying special attention to aspects related to oxygen stoichiometry, phase stability, synthesis and chemical manipulation of charge carriers. Other aspects discussed are chemical applications of cuprates, possibly as gas sensors and copper-free oxide superconductors. All but the substituted Nd and Pr cuprates are hole-superconductors. Several families of cuprates show a nearly constant n(h) at maximum T(c). Besides this universality, the cuprates exhibit a number of striking common features. Based on Cu(2p) photoemission studies, it is found that the Cu-O charge-transfer energy, DELTA, and the Cu(3d)-O(2p) hybridization strength, t(pd), are key factors in the superconductivity of cuprates. The relative intensity of the satellite in the Cu(2p) core-level spectra, the polarizability of the CuO2 sheets as well as the hole concentration are related to DELTA/t(pd). These chemical bonding factors have to be explicitly taken into account in any model for superconductivity of the cuprates.
Resumo:
The zeta potential of high-purity hematite at pH 6 and in a 10−3N NaCl solution has been determined at different concentrations of acetone using the streaming potential technique and the results correlated with the microhardness of the mineral. The zeta potential has been found to decrease as the hardness increases reaching a minimum at 10 cc per litre concentration of acetone when the hardness reaches a maximum. The results have been explained on the basis of competitive adsorption of chloride ions and acetone molecules at low concentrations of acetone and coadsorption of both species above 10 cc per litre concentration. Acetone in distilled water and 10−3N NaCl in distilled water decrease the microhardness of hematite individually between pH 5 to 7 and in combination increase the microhardness reaching a maximum at pH 6.
Resumo:
A comparison is made between German and Russian terminological derivations in chemistry and the methods used by Germans and Russians to solve problems related to the fornlrrtion of scientific words. A study of this comparison, it is believed, can help us in the development of scientific words in Indian languages.
Resumo:
Chemical shifts, ΔE, of the X-ray K-absorption edge in several compounds, complexes of copper including its superconducting oxides possessing formal oxidation states +1 and +2 have been measured. It has been shown that the chemical shift is primarily governed by the effective ionic charge on the absorbing ion and the nature of the atoms in the first coordination shell around the absorbing ion. The relation between the chemical shift, ΔE , and the effective charge q on the absorbing ion is found to be ΔE=Aq+Bq2+Cq3+Dq4 (A, B, C and D are constants). The effects of electronegativity, atomic number, oxidation state, crystal structure, the valence d-orbital electrons, etc. on the X-ray absorption chemical shift have been discussed. ©1990 The Physical Society of Japan
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.