116 resultados para Bion, of Phlossa near Smyrna.
Resumo:
The Bay of Bengal (BoB), a small oceanic region surrounded by landmasses with distinct natural and anthropogenic activities and under the influence of seasonally changing airmass types, is characterized by a rather complex and highly heterogeneous aerosol environment. Concurrent measurements of the physical, optical, and chemical (offline analysis) properties of BoB aerosols, made onboard extensive ship-cruises and aircraft sorties during Integrated Campaign for Aerosols, gases and Radiation Budget of March-April 2006, and satellite-retrieved aerosol optical depths and derived parameters, were synthesized following a synergistic approach to delineate the anthropogenic fraction to the composite aerosol parameters and its spatial variation. Quite interestingly and contrary to the general belief, our studies revealed that, despite of the very high aerosol loading (in the marine atmospheric boundary layer as well as in the vertical column) over the northern BoB and a steep decreasing gradient toward the southern latitudes, the anthropogenic fraction showed a steady increase from North to South (where no obvious anthropogenic source regions exist). Consequently, the direct radiative forcing at the top of the atmosphere due to anthropogenic aerosols remained nearly constant over the entire BoB with values in the range from -3.3 to -3.6 Wm(-2). This interesting finding, beyond doubts calls for a better understanding of the complex aerosol system over the BoB through more focused field campaigns.
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
We conduct a numerical study of the dynamic behavior of a dense hard-sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free-energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through a stretched exponential decay and a two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wave-number dependence of the kinetics is extensively explored. The connection of our results with experiment, mode-coupling theory, and molecular-dynamics results is discussed.
Photodissociation dynamics of small molecules: Dissociation of alkyl iodides in the near ultraviolet
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.
Resumo:
New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.
Resumo:
It is shown that, although the mathematical analysis of the Alfven-wave equation does not show any variation at non-zero or zero singular points, the role of surface waves in the physical mechanism of resonant absorption of Alfven waves is very different at these points. This difference becomes even greater when resistivity is taken into account. At the neutral point the zero-frequency surface waves that are symmetric surface modes of the structured neutral layer couple to the tearing mode instability of the layer. The importance of this study for the energy balance in tearing modes and the association of surface waves with driven magnetic reconnection is also pointed out.
Resumo:
We present a comprehensive study of magnetoresistance (MR) of the crystalline pseudobinary ?-phase Fe alloy series FexNi80-xCr20 (50?x?66). This alloy series shows exotic magnetic phases as the composition (x) is varied. It has a critical composition for ferromagnetism at x=xc?59�60. MR was measured in the temperature range 1.7�110 K and up to a field of 7 T. The observed MR was small and the change was ?1%. The temperature dependence of MR was found to contain a positive and a negative contribution. The positive term was found to be ?H2 and it dominates at high field and high temperatures. We explain this as a manifestation of Kohler�s rule. The negative MR was found to have a quadratic dependence on magnetization M. The magnitude of the negative MR reaches a maximum as x?xc.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)](ClO4) (1-3) of N-2-pyridylmethylidine-2-hydroxyphenylamine (HL) Schiff base and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d: 2',3'-f] quinoxaline (dpq in 2) or dipyrido3,2-a: 2',3'-c] phenazine (dppz in 3), were prepared, characterized and their DNA binding property, photo-induced DNA cleavage activity and photocytotoxicity in HeLa cells studied. The crystal structure of 1 shows the presence of a VO2+ moiety in VO2N4 coordination geometry. The complexes show a d-d band at similar to 830 nm in DMF. The complexes display an oxidative V(V)-V(IV) response near 0.5 V versus SCE and a reductive V(IV)/V(III) response near -0.65 V in DMF -0.1 M TBAP. The complexes that are avid binders to CT DNA giving K-b values within 7.1 x 10(4) to 3.2 x 10(5) M-1, do not show any significant chemical nuclease activity in presence of 3-mercaptopropionic acid or glutathione. The dpq and dppz complexes are photocleavers of pUC19 DNA in UV-A light of 365 nm forming both O-1(2) and (OH)-O-center dot radicals and in near-IR light of 785 nm forming (OH)-O-center dot radicals. The dppz complex exhibits photocytotoxicity in visible light in HeLa cells (IC50 = 6.8 mu M). Flow-cytometric study on this complex shows a high sub-G1 phase in light compared to dark indicating PDT effect. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.