309 resultados para Absorption-spectrum
Resumo:
Tambura is an essential drone accompaniment used in Indian music concerts. It acts as an immediate reference of pitch for both the artists and listeners. The four strings of Tambura are tuned to the frequency ratio :1:1: . Careful listening to Tambura sound reveals that the tonal spectrum is not stationary but is time varying. The object of this study is to make a detailed spectrum analysis to find out the nature of temporal variation of the tonal spectrum of Tambura sound. Results of the analysis are correlated with perceptual evaluation conducted in a controlled acoustic environment. A significant result of this study is to demonstrate the presence of several notes which are normally not noticed even by a professional artist. The effect of bridge in Tambura in producing the so called “live tone” is explained through time and frequency parameters of Tambura sounds.
Resumo:
1. The biopotencies relative to beta-carotene of several apocarotenoids, such as 8'-, 10'- and 12'-apo-beta-carotenal and methyl 8'-apo-beta-carotenoate, were investigated in rats, on a molar basis, by both curative-growth assay and liver-storage tests. 2. In the curative-growth assays, on a molar basis the biopotencies of 8'-, 10'- and 12'-apo-beta-carotenal and methyl 8'-apo-beta-carotenoate were 72, 78, 72 and 53% respectively, whereas on a weight basis the corresponding values were 93, 111, 111 and 63%, with respect to beta-carotene taken as 100%. In terms of yield of vitamin A, these values were much lower in the liver-storage tests. 3. When 8'-apo-beta-carotenal was fed, the unchanged aldehyde together with small amounts of the corresponding alcohol and larger proportions of the acid rapidly appeared in the tissues of both rats and chickens. The 8'-apocarotenol, 8'-apocarotenoic acid and its methyl ester were absorbed unchanged. The free acid disappeared most rapidly from the tissues, but its methyl ester persisted in the tissues longest. 4. On the basis of these observations it is suggested that most of an apocarotenal is oxidized to the corresponding acid, which, in turn, is mostly degraded to retinoic acid, with small proportions of it being attacked by the dioxygenase system giving retinal.
Resumo:
X-ray LIII-absorption edges of platinum in nine octahedral complexes have been recorded using a bent crystal spectrograph. The edge features of the discontinuities have been interpreted with the help of qualitative molecular orbital diagrams. A correlation between the energy separation of the first two absorption maxima and the spectrochemical series of the ligands has been arrived at.
Resumo:
A new simple-pole model for muon capture by 40Ca with emission of neutrons is suggested, in close analogy with radiative pion capture, and the calculated energy spectrum of the emitted neutron agrees well with the experimental results of the Columbia group for higher neutron energies.
Resumo:
ESR investigations are reported in single crystals of copper diethyldithiophosphate, magnetically diluted with the corresponding diamagnetic nickel complex. The spectrum at normal gain shows hyperfine components from 63Cu, 65Cu, and 31P nuclei. At much higher gain, hyperfine interaction from 33S nuclei in the ligand is detected. The spin Hamiltonian parameters relating to copper show tetragonal symmetry. The measured parameters are g|| = 2.085, g[perpendicular]=2.025, A63Cu = 149.6 × 10−4 cm−1, A65Cu = 160.8 × 10−4 cm−1, BCu = 32.5 × 10−4 cm−1 and QCu [infinity] 5.5 × 10−4cm−1. The 31P interaction is isotropic with a coupling constant AP = 9.6 × 10−4 cm−1. Angular variation of the 33S lines shows two different hyperfine tensors indicating the presence of two chemically inequivalent Cu[Single Bond]S bonds. The experimentally determined hyperfine constants are A 1s=34.9×10−4 cm−1, B 1s=26.1×10−4 cm−1, A 2s=60.4×10−4 cm−1, B2s=55.5×10−4 cm−1. The hyperfine parameters show that the hybridization of the ligand orbitals is very sensitive to the symmetry around the ligand. The g values and Cu hyperfine parameters are not much affected by the distortions occurring in the ligand. The energies of the d-d transitions are determined by optical absorption measurements on Cu diethyldithiophosphate in solution. Using the spin Hamiltonian parameters together with optical absorption results, the MO parameters for the complex are calculated. It is found that in addition to the sigma bond, the pi bonds are also strongly covalent. ©1973 The American Institute of Physics.
Resumo:
The density of states n(E) is calculated for a bound system whose classical motion is integrable, starting from an expression in terms of the trace of the time-dependent Green function. The novel feature is the use of action-angle variables. This has the advantages that the trace operation reduces to a trivial multiplication and the dependence of n(E) on all classical closed orbits with different topologies appears naturally. The method is contrasted with another, not applicable to integrable systems except in special cases, in which quantization arises from a single closed orbit which is assumed isolated and the trace taken by the method of stationary phase.
Resumo:
Arsenic selenide-telluride glasses have been investigated by X-ray absorption and photoelectron spectroscopy. The core electron energy shifts and chemical shifts in K-absorption edge measurements associated with the glass-crystal transitions of pure As2Se3 and As2Te3 have been studied. The effect of composition on the core level energy and valence bands of As2(Se,Te)3 glasses, has been discussed. Mixed-composition glasses are found to be considerably ionic.
Resumo:
We describe the solution combustion synthesis and characterization of La1-xKxMnO3 (0.0 <= x <= 0.25) perovskite phases, which is a low temperature initiated, rapid route to prepare metal oxides. As-synthesized compounds are amorphous in nature; crystallinity was observed on heating at 800 degrees C for 5 min. Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent LaMnO3 compound crystallizes in the orthorhombic structure (space group Pbnm, No. 62). Potassium substituted compounds were crystallized with rhombohedral symmetry (space group R-3c, No. 167). The ratio of the Mn3+/Mn4+ was determined by the iodometric titration. The Fourier transform infrared spectrum (FTIR) shows two absorption bands for Mn-O stretching vibration (v, mode), Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions, x = 0.0, 0.05 and 0-10. Four-probe electrical resistivity measurements reveal a composition controlled metal to insulator transition (TM-1), the maximum TM-1 was observed for the composition La0.85K0.15MnO3 at 287 K. Room temperature vibrating sample magnetometer data indicate that for the composition up to x = 0-10, the compounds are paramagnetic whereas composition with x = 0.15, 0.20 and 0.25 show magnetic moments of 27, 29 and 30 emu/g, respectively.
Resumo:
This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.
Resumo:
Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pump-probe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, beta of (similar to 2-9) x 10(-8) cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by it slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed. (C) 2009 American Institute of Physics.
Resumo:
Iron encapsulated carbon nanoparticle polyvinyl chloride composite films have been prepared by solvent mixing and drying method. The films were characterized by scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). A 5 nm thin graphitic carbon coating is observed on cubic Fe nanoparticles. The microwave absorption studies by wave guide technique in the Ka band range showed highest electromagnetic interference shielding efficiency of 18dB on a 300 micron thick film. The shielding efficiency depends on weight % of the filler in the composite. The data obtained for different films indicate that these lightweight materials are good candidates for potential electromagnetic interference shielding applications.
Resumo:
One-dimensional (1D) proton NMR spectra of enantiomers are generally undecipherable in chiral orienting poly-gamma-benzyl-L-glutamate (PBLG)/CDCl3 solvent. This arises due to large number of couplings, in addition to superposition of spectra from both the enantiomers, severely hindering the H-1 detection. On the other hand in the present study the benefit is derived front the presence of several couplings among the entire network of interacting protons. Transition selective 1D H-1-H-1 correlation experiment (1D-COSY) which utilizes the Coupling assisted transfer of magnetization not only for unraveling the overlap but also for the selective detection of enantiopure spectrum is reported. The experiment is simple, easy to implement and provides accurate eanantiomeric excess in addition to the determination of the proton-proton couplings of an enantiomer within a short experimental time (few minutes). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The photoluminescence (PL) of a series of (GeS2)(80)(Ga2S3)(20) glasses doped with different amounts of Er (0.17, 0.35, 0.52, 1.05 and 1.39 at.%) at 77 and 4.2 K has been studied. The influence of the temperature on the emission cross-section of the PL bands at -> 1540, 980 and 820 nm under host excitation has been defined. A quenching effect of the host photoluminescence has been established from the compositional dependence of the PL intensity. It has been found that the present Er3+-doped Ge-S-Ga glasses posses PL lifetime values about 3.25 ms. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.