231 resultados para 259903 Industrial Chemistry
Resumo:
The reactions of a range of acyclic, cyclic and bicyclic diphosphazanes with several transition metal organometallic derivatives have been investigated. The structures of the products have been deduced from IR and NMR spectroscopic data and confirmed by single crystal X-ray analysis of a few representative compounds.
Resumo:
Solid state chemistry was in its infancy when the author got interested in the subject. In this article, the author outlines the manner in which the subject has grown over the last four decades, citing representative examples from his own contributions to the different facets of the subject. The various aspects covered include synthesis, structure, defects, phase transitions, transition metal oxides, catalysts, superconductors, metal clusters and fullerenes. In an effort to demonstrate the breadth and vitality of the subject, the author shares his own experiences and aspirations and gives expression to the agony and ecstacy in carrying out experimental research in such a frontier area in India.
Resumo:
The objective of the study was to investigate the effects of the nature of solvent and polymer concentration on the mass-transfer coefficients in desorption of solvents and to develop a correlation to predict them. Desorption was experimentally studied in a Lewis cell with concentrated binary solutions of polymer in good and poor solvents. The range of parameters covered are polymer weight fraction between 0.25 and 0.6, Reynolds number between 3 and 100; Schmidt number between 1.4 X lo6 and 2.5 X lo8, and Sherwood number between 3.5 X lo2 and 1.2 X lo4. Desorption from moderately concentrated solutions (polymer weight fraction -0.25) is gas-phase controlled. Studies with more concentrated solutions showed that the effects of solvent and concentration were such that corrections due to concentration-dependent diffusivity and viscosity as well as high flux had to be applied to the mass-transfer coefficients before they could be correlated.
Resumo:
Investigations of a variety of transition metal clusters by means of high-energy spectroscopies including BIS show the occurrence of a metal-insulator transition with decrease in the cluster size. The chemical reactivity of the clusters also varies significantly with the size. Among the many fascinating properties of the fullerenes C60 and C70, a noteworthy one is the interaction between metal clusters and fullerenes. Phase transitions of fullerenes involving orientational disorder and pressure-induced decrease in the band gap of C60 are other novel features of interest.
Resumo:
The reactions of [MCl2(cod)](M = Pd or Pt, cod = cycloocta-1,5-diene) with RN[P(OPh)2]2[R = Me (L1) or Ph (L2)] afford the chelate complexes [MCl2L1] and [MCl2L2]. The dinuclear palladium(O) complex, [Pd2L13] has been synthesized by starting from [Pd2(dba)3](dba = dibenzylideneacetone). Redox condensation of [Pd2(dba)3] and [PdCl2(PhCN)2] in the presence of the diphosphazane ligands gives the dinuclear palladium(I) complexes [Pd2Cl2L12] and [Pd2Cl2L22]. The structures of the complexes have been deduced from 1H and 31P NMR spectroscopic data. Single-crystal X-ray diffraction studies confirm the structures of [Pd2L13] and [Pd2Cl2L22].
Resumo:
The reaction of fac-[Mo(CO)3(MeCN)3] with the unsymmetrical diphosphazane Ph2PN(iPr)P(Ph)(DMP) (L) gives the complex fac-[Mo(CO)3(MeCN)(L)] (2) in almost quantitative yield. The structure of the complex has been determined by an X-ray diffraction study. The compound reacts with PR3 (where R = Ph, OPh) to give fac-[Mo(CO)3(PR3)(L)] (3a, 4a), which undergoes an intramolecular isomerization to afford mer-[Mo(CO)3(PR3)(L)] (3b, 4b). Synthesis of cis-[Mo(CO)4(L)] (1) and fac-[MO(CO)3L] (2a) and their spectroscopic data are also reported.
Resumo:
Equilibrium of dissolution of sulfur dioxide at ppm levels in aqueous solutions of dilute sulfuric acid is analyzed, and a general expression is derived relating the total concentration of sulfur dioxide in the liquid phase to the partial pressure of SO2 in the gas and to the concentration of sulfuric acid in the solution. The equation is simplified for zero and high concentrations of the acid. Experiments at high concentrations of sulfuric acid have enabled the direct determination of Henry’s constant and its dependency on temperature. Heat of dissolution is -31.47 kJ/mol. Experiments in the absence of sulfuric acid and the related simplified expression have led to the determination of the equilibrium constant of the hydrolysis of aqueous sulfur dioxide and its temperature dependency.The heat of hydrolysis is 15.69 kJ/mol. The model equation with these parameters predicts the experimental data of the present work as well as the reported data very well.
Resumo:
Thiobacillus ferrooxidans cells grown on sulfur, pyrite, and chalcopyrite exhibit greater hydrophobicity than ferrous ion-grown cells. The isoelectric points of sulfur-, pyrite-, and chalcopyrite-grown cells were observed to be at a pH higher than that for ferrous ion-grown cells. Microbe-mineral interactions result in change in the surface chemistry of the organism as well as that of the minerals with which it has interacted. Sulfur, pyrite, and chalcopyrite after interaction with T. ferrooxidans exhibited a significant shift in their isoelectric points from the initial values exhibited by uninteracted minerals. With antibodies raised against sulfur-grown T. ferrooxidans, pyrite- and chalcopyrite-grown cells showed immunoreactivity, whereas ferrous ion-grown cells failed to do so. Fourier transform infrared spectroscopy of sulfur-grown cells suggested that a proteinaceous new cell surface appendage synthesized in mineral-grown cells brings about adhesion to the solid mineral substrates. Such an appendage was found to be absent in ferrous ion-grown cells as it is not required during growth in liquid substrates.
Resumo:
Click chemistry has been successfully extended into the field of molecular design of novel amphiphatic adducts. After their syntheses and characterizations, we have studied their aggregation properties in aqueous medium. Each of these adducts forms stable suspensions in water. These suspensions have been characterized by dynamic light scattering (DLS) studies and transmission electron microscopy (TEM). The presence of inner aqueous compartments in such aggregates has been demonstrated using dye (methylene blue) entrapment studies. These aggregates have been further characterized using X-ray diffraction (XRD), which indicates the existence of bilayer structures in them. Therefore, the resulting aggregates could be described as vesicles. The temperature-induced order-to-disorder transitions of the vesicular aggregates and the accompanying changes in their packing and hydration have been examined using high-sensitivity differential scanning calorimetry, fluorescence anisotropy, and generalized polarization measurements using appropriate membrane-soluble probe, 1,6-diphenylhexatriene, and Paldan, respectively. The findings of these studies are consistent with each other in terms of the apparent phase transition temperatures. Langmuir monolayer studies confirmed that these click adducts also form stable monolayers on buffered aqueous subphase at the air-water interface.
Resumo:
Gold(I)-based drugs have been used successfully for the treatment of rheumatoid arthritis (RA) for several years. Although the exact mechanism of action of these gold(I) drugs for RA has not been clearly established, the interaction of these compounds with mammalian enzymes has been extensively studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with mammalian proteins that contain cysteine (Cys) and selenocysteine (Sec) residues. Owing to the higher affinity of gold(I) towards sulfur and selenium, gold(I) drugs rapidly react with the activated cysteine or selenocysteine residues of the enzymes to form protein-gold(I)-thiolate or protein-gold(I)-selenolate complexes. The formation of stable gold(I)-thiolate/selenolate complexes generally lead to inhibition of the enzyme activity. The gold-thiolate/selenolate complexes undergo extensive ligand exchange reactions with other nucleophiles and such ligand exchange reactions alter the inhibitory effects of gold(I) complexes. Therefore, the effect of gold(I) compounds on the enzymatic activity of cysteine-or selenocysteine-containing proteins may play important roles in RA. The interaction of gold(I) compounds with different enzymes and the biochemical mechanism underlying the inhibition of enzymatic activities may have broad medicinal implications for the treatment of RA.