160 resultados para rare elements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the second part of a two part review on the state-of-the-art in holographic optical elements (HOEs). The aspects of fabrication, evaluation, and applications of HOEs, are discussed in this part. It details the direction of future efforts towards finding work-horse type recording media, developing new methods for the evaluation of HOE, and identifying the areas of application where HOEs are to be considered as indispensable components/tools. Finally a summary of all the suggestions for future work made in the two parts is displayed in Table 2 of this part of the review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A state-of-the-art review on holographic optical elements (HOE) is presented in two parts. In Part I a conceptual overview and an assessment of the current status on the design of HOE have been included. It is pointed out that HOE development based on the use of squeezed light, speckle, non-linear recording, comparative studies between optics and communication approaches, are some of the promising directions for future research in this vital area of photonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the piezoresistivity in nanostructured. polycrystalline films of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 grown on oxidized Si (100) substrates. We have observed that the hole doped rare-earth manganites, which are well known for being colossal magnetoresistive (CMR) show change in its resistance under uniaxial strain even at room temperature. The piezoresistance was measured at room temperature by bending the Si cantilevers (on which the film is grown) in flexural mode both with compressive and tensile strain. The resistance of the film increases with tensile strain and decreases with compressive strain. A large gauge factor of 15-20 is seen in these films at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal growth, electrical and magnetic properties are reported for mixed valence manganite Pr1-xPbxMnO3 (x = 0.2, 0.23, and 0.3). The crystals with x = 0.2 and 0.23 are ferromagnetic and insulating, whereas that with x = 0.3 is ferromagnetic below 200 K and shows an insulator-metal transition at 235 K. This composition shows a magnetoresistance of 90% in a field of 5 T. In the paramagnetic region, the temperature dependence of magnetic susceptibility of the crystals follows a Curie-Weiss behavior. The thermal evolution of magnetization in the ferromagnetic phase varies as T-3/2, in accordance with Bloch's law. The spin-stiffness constant D obtained from the Bloch constant is found to increase linearly with x. The magnetization does not reach complete saturation upto a field of 5 T. A possible contribution of the Pr spins to the total magnetic moment is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of lanthanum biscitrato chromium(III) dihydrate has been studied in static air and dynamic argon atmospheres. The complex decomposes in four steps: dehydration, decomposition of the citrate to an intermediate oxycarbonate, formation of LaCrO4(V) from oxycarbonate, and finally decomposition of LaCrO4(V) to LaCrO3. Formation of LaCrCrO4(V) requires the presence of oxygen The decomposition behaviour of a mechanical mixture of lanthanum citrate hydrate and chromium citrate hydrate was compared with that of the citrato complex. Both the starting material and the intermediates were characterized by X-ray diffraction, IR electronic and ESR spectroscopy, surface area and magnetic susceptibility measurements, as well as by chemical analysis. A scheme is proposed for the decomposition of lanthanum biscitrato chromium(III) dihydrate in air. LaCrO3 can be obtained at temperatures as low as 875 K by isothermal decomposition of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductivity in cuprates of the general formula TlCa1-xLnxSr2Cu2O7+ delta has been investigated as a function of Ln and x. Compositions with 0.250.25. Thus, these cuprates exhibit a composition-dependent electron- or hole-superconductivity. In the normal state, most of the members of the series traverse compositionally determined metal-insulator transitions. High-energy spectroscopies show the presence of Cu in the 1+ and 2+ states. The Raman frequency around 525 cm-1 characteristic of the Tl-O2-Cu linkage is sensitive to both Ln and x, indicating a possible involvement in the mechanism of superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxides of the formula La3LnBaCu5O13+δ (Ln = Nd, Sm, Gd, Dy, or Y) exhibiting metallic resistivity have been prepared and characterized. In the case of yttrium, a composition close to La2Y2BaCu5O13+δ, which is also metallic, could be prepared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically modified microporous materials can be prepared as robust catalysts suitable for application in vapor phase processes such as Friedel-Crafts alkylation. In the present paper we have investigated the use of rare earth metal (Ce3+, La3+, RE3+, and Sm3+) exchanged Na-Y zeolites as catalysts for the alkylation of benzene with long chain linear 1-olefin; 1-dodecene. Thermodesorption studies of 2,6-dimethylpyridine adsorbed catalysts (in the temperature range 573 to 873 K) show that the rare earth zeolites are highly Bronsted acidic in nature. A perfect correlation between catalyst selectivity towards the desired product (2-phenyldodecane) and Bronsted acid sites amount has been observed. (c) 2006 Springer Science + Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.