419 resultados para power graphs
Resumo:
The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.
Resumo:
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.
Resumo:
Two decision versions of a combinatorial power minimization problem for scheduling in a time-slotted Gaussian multiple-access channel (GMAC) are studied in this paper. If the number of slots per second is a variable, the problem is shown to be NP-complete. If the number of time-slots per second is fixed, an algorithm that terminates in O (Length (I)N+1) steps is provided.
Resumo:
A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.
Resumo:
In this paper, we study the thermoelectric power under strong magnetic field (TPSM) in quantum dots (QDs) of nonlinear optical, III-V, II-VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, Lead Germanium Telluride, GaSb, stressed materials, Bismuth, IV-VI, II-V, Zinc and Cadmium diphosphides, Bi2Te3 and Antimony respectively. The TPSM in III-V, II-VI, IV-VI, HgTe/CdTe quantum well superlattices with graded interfaces and effective mass superlattices of the same materials together with the quantum dots of aforementioned superlattices have also been investigated in this context on the basis of respective carrier dispersion laws. It has been found that the TPSM for the said quantum dots oscillates with increasing thickness and decreases with increasing electron concentration in various manners and oscillates with film thickness, inverse quantizing magnetic field and impurity concentration for all types of superlattices with two entirely different signatures of quantization as appropriate in respective cases of the aforementioned quantized structures. The well known expression of the TPSM for wide-gap materials has been obtained as special case for our generalized analysis under certain limiting condition, and this compatibility is an indirect test of our generalized formalism. Besides, we have suggested the experimental method of determining the carrier contribution to elastic constants for nanostructured materials having arbitrary dispersion laws.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
A new approach based on finite difference method, is proposed for the simulation of electrical conditions in a dc energized wire-duct electrostatic precipitator with and without dust loading. Simulated voltage-curren characteristics with and without dust loading were compared with the measured characteristics for analyzing the performance of a precipitator. The simple finite difference method gives sufficiently accurate results with reduced mesh size. The results for dust free simulation were validated with published experimental data. Further measurements were conducted at a thermal power plant in India and the results compares well with the measured ones.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.
Resumo:
Inadvertent failure of power transformers has serious consequences on the power system reliability, economics and the revenue accrual. Insulation is the weakest link in the power transformer prompting periodic inspection of the status of insulation at different points in time. A close Monitoring of the electrical, chemical and such other properties on insulation as are sensitive to the amount of time-dependent degradation becomes mandatory to judge the status of the equipment. Data-driven Diagnostic Testing and Condition Monitoring (DTCM) specific to power transformer is the aspect in focus. Authors develop a Monte Carlo approach for augmenting the rather scanty experimental data normally acquired using Proto-types of power transformers. Also described is a validation procedure for estimating the accuracy of the Model so developed.
Resumo:
This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
The Hadwiger number eta(G) of a graph G is the largest integer n for which the complete graph K-n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, eta(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G square H of graphs. As the main result of this paper, we prove that eta(G(1) square G(2)) >= h root 1 (1 - o(1)) for any two graphs G(1) and G(2) with eta(G(1)) = h and eta(G(2)) = l. We show that the above lower bound is asymptotically best possible when h >= l. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let G = G(1) square G(2) square ... square G(k) be the ( unique) prime factorization of G. Then G satisfies Hadwiger's conjecture if k >= 2 log log chi(G) + c', where c' is a constant. This improves the 2 log chi(G) + 3 bound in [2] 2. Let G(1) and G(2) be two graphs such that chi(G1) >= chi(G2) >= clog(1.5)(chi(G(1))), where c is a constant. Then G1 square G2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G(d) (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan [2]. ( They had shown that the Hadiwger's conjecture is true for G(d) if d >= 3).
Resumo:
In this paper we consider the problems of computing a minimum co-cycle basis and a minimum weakly fundamental co-cycle basis of a directed graph G. A co-cycle in G corresponds to a vertex partition (S,V ∖ S) and a { − 1,0,1} edge incidence vector is associated with each co-cycle. The vector space over ℚ generated by these vectors is the co-cycle space of G. Alternately, the co-cycle space is the orthogonal complement of the cycle space of G. The minimum co-cycle basis problem asks for a set of co-cycles that span the co-cycle space of G and whose sum of weights is minimum. Weakly fundamental co-cycle bases are a special class of co-cycle bases, these form a natural superclass of strictly fundamental co-cycle bases and it is known that computing a minimum weight strictly fundamental co-cycle basis is NP-hard. We show that the co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the underlying undirected graph of G is a minimum co-cycle basis of G and it is also weakly fundamental.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
A combined base station association and power control problem is studied for the uplink of multichannel multicell cellular networks, in which each channel is used by exactly one cell (i.e., base station). A distributed association and power update algorithm is proposed and shown to converge to a Nash equilibrium of a noncooperative game. We consider network models with discrete mobiles (yielding an atomic congestion game), as well as a continuum of mobiles (yielding a population game). We find that the equilibria need not be Pareto efficient, nor need they be system optimal. To address the lack of system optimality, we propose pricing mechanisms. It is shown that these mechanisms can be implemented in a distributed fashion.