165 resultados para polymeric microbeads
Resumo:
The catalytic activity of cobalt phthalocyanine monomer and some of its polymeric derivatives towards the electroreduction of molecular oxygen in salt and alkaline solutions is examined. It is found that most of these complexes exhibit a higher catalytic activity than the cobalt phthalocyanine monomer.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.
Resumo:
The interaction of dextrin and guar gum with pyrite has been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of the polysaccharides onto pyrite reveal a region of higher adsorption density in the pH range 7.5-11, with a maximum around pH 10 for both polymers. The isotherms exhibit Langmuirian behavior. The adsorption density of guar gum onto pyrite is higher than that of dextrin. Electrokinetic measurements indicate a decrease in the electrophoretic mobility values in proportion to the concentration of the polymer added. Co-precipitation tests confirm polymer-ferric species interaction in the bulk solution, especially in the pH range 5.5-8.5. The pH range for higher adsorption, significant co-precipitation, and appreciable depression of pyrite encompass each other. XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and the hydroxyl groups of the polymeric depressants. (C) 2000 Academic Press.
Resumo:
Polymeric peroxides have received renewed attention in the recent past, in view of some significant explorations of their physical and chemical properties. The potential of polymeric peroxides as a class, as specialized fuel, and the need to synthesize such new materials have been reported in the literature. So far, this class of polymers is constituted only by a dozen or so polyperoxides. From the point of view of their use in propellant applications, the importance lies in making materials which are easy to handle etc., unlike the earlier reported poly(styrene peroxide) (PSP), a sticky semi-solid mass. However, judging from the better combustion characteristics, exploring aromatic monomers was thought worthwhile. In this preliminary communication, the synthesis of a new polymeric peroxide made from 1,4-divinylbenzene is reported. The polymer obtained was in powder form and had an exothermic heat of degradation approximately equal to that of PSP. 4 ref.--AA
Resumo:
Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications, It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker-Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction-separation law. The results show that for a given mode mixity, the steady state Fracture toughness [K](ss) is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, [K](ss) increases steeply as mode Il loading is approached. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.
Resumo:
Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxy-phenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.
Resumo:
Polymeric admixtures to concrete ingredients modify the properties of the processed concrete. Ductility is one such property modification. This investigation deals with the development of a method of incorporating natural rubber latex into concrete ingredients with only marginal effects on the compressive strength of base plain concrete. This retention of the strength has been effected by reducing the water/cement ratio with the aid of a superplasticizer. The quantity of natural rubber latex is expressed as the dry rubber content by percentage of volume of concrete. The compressive and tensile strengths, as well as post peak ductile behaviour have been the basis for comparison with those of unmodified concrete.
Resumo:
Authors perform zeta potential studies on hematite, corundum, and quartz samples using starches to understand the adsorption behavior of polymeric starch flocculants at the oxide mineral-solution interface and to correlate this information with their flocculation characteristics and investigate effects of pH and CaCl#72 on zeta potential of Fe ore minerals.
Resumo:
In EHV and UHV power transmission lines, corona could occur even on well designed transmission line hardware and insulators especially under wet conditions. Corona if allowed to occur continuously can significantly damage the polymeric insulators used in such lines in the long run. This paper presents the experimental results of corona aging studies conducted on unfilled silicone rubber as well as filled silicone rubber nanocomposites. Corona aging studies were conducted on silicone rubber samples with filler concentrations of 0, 1, 2 and 3 % by wt of nanosilica for 25 h and 50 h. Needle-plane electrode geometry has been used to create the corona on the samples. Different characterization techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray analysis, Hydrophobicity, Fourier Transform Infrared Spectroscopy, and Optical Profilometry have been used to assess the relative performance of the samples with respect to corona aging. Results indicate that at 3 wt %, the performance of the nanocomposite is much better than the unfilled silicon rubber which can be attributed to the modifications in the material caused by the size factor of the filler.
Resumo:
Three new transition metal complexes using 2-pyrimidineamidoxime (pmadH(2)) as multidentate chelating and/or bridging ligand have been synthesized and characterized. The ligand pmadH(2) has two potential bridging functional groups mu-O and mu-(N-O)] and consequently shows several coordination modes. While a polymeric 1D Cu-II complex Cu(pmadH(2))(2)(NO3)](NO3) (1) was obtained upon treatment of Cu(NO3)(2)center dot 3H(2)O with pmadH(2) at room temperature in the absence of base, a high temperature reaction in the presence of base yielded a tetranuclear Cu-II-complex Cu-4(pmad)(2)(pmadH)(2)(NO3)](NO3)(H2O) (2). One of the Cu-II centers is in a square pyramidal environment while the other three are in a square planar geometry. Reaction of the same ligand with an equimolar mixture of both Cu(NO3)(2)center dot 3H(2)O and NiCl2 center dot 6H(2)O yielded a tetranuclear heterometallic (Cu2Ni2II)-Ni-II complex Cu2Ni2(pmad)(2)(pmadH)(2)Cl-2]center dot H2O (3) containing both square planar (Ni-II) and square pyramidal (Cu-II) metal centers. Complexes 1-3 represent the first examples of polynuclear metal complexes of 2-pyrimidineamidoxime. The analysis of variable temperature magnetic susceptibility data of 2 reveals that both ferromagnetic and antiferromagnetic interactions exist in this complex (J(1) = +10.7 cm(-1) and J(2) = -2.7 cm(-1) with g = 2.1) leading to a resultant ferromagnetic behavior. Complex 3 shows expected antiferromagnetic interaction between two Cu-II centers through -N-O- bridging pathway with J(1) = -3.4 cm(-1) and g = 2.08. DFT calculations have been used to corroborate the magnetic results.
Resumo:
The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6
Resumo:
This paper deals with the two-dimensional electric field modelling and electric field stress calculations of different types of composite insulators used in high voltage distribution and transmission systems. The computer simulations are carried out by using a commercially available software package. The potential and electric filed results obtained for the actual insulator profiles for three types of composite/polymeric insulators are discussed and presented.
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.