170 resultados para degradation gradient
Resumo:
The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.
Resumo:
The EMF of a solid-state cell, incorporating a composite solid-electrolyte with gradual variation in composition, and dissimilar gas electrodes, has been studied as a function of temperature and partial pressures at the electrodes. The cell with the configuration: Pt, CO2' + O2' parallel-to Na2CO3\Na(SO4)x(CO3)1-x\Na2SO4 parallel-to SO3'' + SO2'' + O2'', Pt x=0 x=1 was investigated in the temperature range 973 to 1079 K. The solid-electrolyte surface exposed to SO3 + SO2 + O2 gas mixture was doped-Na2SO4, whereas the CO2 + O2 gas mixture was in contact with pure Na2CO3. The composition of the solid solution between the carbonate and sulfate, with hexagonal structure, was varied gradually between the boundary values. It has been found that the EMF of the cell is close to that calculated from thermodynamic data, assuming unit transport number for Na+ ions. The gradient in the concentration of sulfate and carbonate ions in the electrolyte does not give rise to a significant diffusion potential.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
The thermodynamic properties of K2CO3 -KSO, solid solutions with hexagonal structure have been measured using a solid-state cell, incorporating a composite solid electrolyte with step-changes in composition. The cell with the configuration Pt, CO2' + O2' || K2CO3 | K2(CO3)x(SO4)1-x || CO2'' + O2'' + Pt X =1 X=X was investigated in the temperature range of 925 to 1165 K. The composite gradient solid electrolyte consisted of pure K2CO3 at one extremity and the solid solution under study at the other. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes and temperature was demonstrated. The activity of K2CO3 in the solid solution was measured by three techniques. All three methods gave identical results, indicating unit transport number for K+ ions and negligible diffusion potential due to concentration gradients of carbonate and sulfate ions. The activity of K2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs energy of mixing of the solid solution can be represented using a subregular solution model DELTAG(E) = X(1 - X)[5030X + 4715(1 - X)] J mol-1 By combining this information with the phase diagram, mixing properties of the liquid phase were obtained.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a timevarying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The thermodynamic properties of Na2CO3-Na2SO4 solid solution with hexagonal structure have been measured in the temperature range of 873 to 1073 K, using a composite-gradient solid electrolyte. The cell used can be represented as The composite-gradient solid electrolyte consisted of pure Na2CO3 at one extremity and the solid solution under study at the other, with variation in composition across the electrolyte. A CO2 + O2 + Ar gas mixture was used to fix the chemical potential of sodium at each electrode. The Nernstian response of the cell to changes in partial pressures of CO2 and O2 at the electrodes has been demonstrated. The activity of Na2CO3 in the solid solution was measured by two techniques. In the first method, the electromotive force (emf) of the cell was measured with the same CO2 + O2 + Ar mixture at both electrodes. The resultant emf is directly related to the activity of Na2CO3 at the solid solution electrode. By the second approach, the activity was calculated from the difference in compositions Of CO2 + O2 + Ar mixtures at the two electrodes required to produce a null emf. Both methods gave identical results. The second method is more suitable for gradient solid electrolytes that exhibit significant electronic conduction. The activity of Na2CO3 exhibits positive deviation from Raoult's law. The excess Gibbs' energy of mixing of the solid solution can be represented using a subregular solution model such as the following: DELTAG(E) = X(1 - X)[6500(+/-200)X + 3320(+/-80)(1 - X)J mol-1 where X is the mole fraction of Na2CO3. By combining this information with the phase diagram, mixing properties of the liquid phase are obtained.
Resumo:
Pseudomonas cepacia CSV90 is able to utilize 2,4-dichlorophenoxyacetate (2,4-D) and 2-methyl-4-chlorophenoxyacetate as sole sources of carbon and energy. Mutants of the strain CSV90 which had lost this ability appeared spontaneously on a nonselective medium. The wild-type strain harbored a 90-kb plasmid, pMAB1, whereas 2,4-D-negative mutants either lost the plasmid or had a 70-kb plasmid, pMAB2. The plasmid pMAB2 was found to have undergone a deletion Of a 20-kb fragment of pMAB1. The plasmid-free mutants regained the ability to degrade 2,4-D after introduction of purified pMAB1 by electroporation. Cloning in Escherichia coli of a 10-kb BamHI fragment from pMAB1, the region absent in pMAB2, resulted in the expression of the gene tfdC encoding 3,5-dichlorocatechol 1,2-dioxygenase. After subcloning, the tfdC gene was located in a 1.6-kb HindIII fragment. The nucleotide sequence of the tfdC gene and the restriction map of its contiguous region are identical to those of the well-characterized 2,4-D-degradative plasmid pJP4 of Alcaligenes eutrophus, whereas the overall restriction maps of the two plasmids are different. The N-terminal 44-amino-acid sequence of the enzyme purified from the strain CSV90 confirmed the reading frame in the DNA sequence for tfdC and indicated that the initiation codon GUG is read as methionine instead of valine.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Resumo:
The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.
Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine
Resumo:
The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.
Resumo:
Nanosized powders of TiO2 (anatase) were prepared by the hydrothermal method, acid-medium hydrolysis or by vacuum freeze-drying of sols, and annealing at temperatures <700-degrees-C. Photocatalytic activities of these powders in the mineralization of phenol, were evaluated in comparison to that of Degussa P25. Kinetic data indicated that surface hydroxylation had a retarding effect on the degradation of phenol. Formation of stable peroxotitanium species were observed on hydroxylated powders, whereas only V(Ti)-O- hole trap centres were detected by EPR on the heat treated samples. The data supports direct hole oxidation of the substrate preadsorbed on the photocatalyst, which is otherwise blocked by surface hydroxyls.
Resumo:
New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.