63 resultados para Vehicle Trajectory.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports results of an experimental investigation of airblast spray of water and ethanol in crossflow. Laser shadowgraphy and Particle/Droplet Imaging Analysis (PDIA) are used to derive spray trajectory and drop size information while Particle Tracking Velocimetry (PTV) is used to measure droplet velocities. A new phenomenon of spray bifurcation is observed for low Gas to Liquid Ratio (GLR) cases. The reasons for the spatial bifurcation can be attributed to a combination of reasons. These are (a) presence of large ligaments and droplets in the near-nozzle region for low GLRs (b) secondary breakup experienced by ligaments/droplets leading to formation of a large number of small droplets, and (c) the crossflow causing differential dispersion of the small and large droplets. A novel correlation for spray trajectory is proposed incorporating the momentum ratio and liquid surface tension. This correlation is shown to be effective in predicting the non-linear spray trajectory over a large range of conditions for not only water but ethanol and Jet-A also. It is observed that the larger droplets penetrate further into the crossflow, in the direction of injection. Thus, with increase in height of the measurement location from the injection plane, the droplet Sauter Mean Diameter (SMD) is found to increase. Moreover, as the droplets travel downstream in the crossflow direction, the droplet SMD is observed to decrease. The effect of drag is assessed by comparing velocity of different sizes of droplets at various locations. Smaller droplets are entrained into the crossflow at much lower elevations, whereas larger droplets tend to penetrate further into the crossflow. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viral phenomenon has garnered a great deal of attention in the recent years. Although evidence of viral success exists the underlying factors leading to the phenomenon and its measurement still remains a grey area which needs to be explored. The viral phenomenon for a product or information and its distinction based on growth curve trajectory has not been rigorously explored in the previous works. This paper aims to understand the viral phenomenon that makes products or information go viral. The viral phenomenon trajectories that distinguish the viral from a non-viral phenomenon are demonstrated. The curve fitting methodology for viral phenomenon is adopted which has not been looked into in the previous works. TED talks are analyzed to understand the diffusion pattern, essentially one or more spike, within a time period. Insights drawn indicate the characteristic viral growth trajectories and its implication on innovation.