165 resultados para Two-point boundary value problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analytically evaluate the Renyi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Renyi entropies S-n are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel theta function associated with the A(n-1) lattice. We then study the Renyi entropies in the decompactification regime. We show that in the limit when the size of the interval becomes the size of the spatial circle, the entanglement entropy reduces to the thermal entropy of free bosons on a circle. We then set up a systematic high temperature expansion of the Renyi entropies and evaluate the finite size corrections for free bosons. Finally we compare these finite size corrections both for the free boson CFT and the free fermion CFT with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces as its boundary. One-loop corrections in these geometries are entirely determined by quantum numbers of the excitations present in the bulk. This implies that the leading finite size corrections contributions from one-loop determinants of the Chern-Simons gauge field and the Dirac field in the dual geometry should reproduce that of the free boson and the free fermion CFT respectively. By evaluating these corrections both in the bulk and in the CFT explicitly we show that this expectation is indeed true.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1-MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3-p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at theta = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial-value problems for the generalized Burgers equation (GBE) ut+u betaux+lambdaualpha =(delta/2)uxx are discussed for the single hump type of initial data both continuous and discontinuous. The numerical solution is carried to the self-similar ``intermediate asymptotic'' regime when the solution is given analytically by the self-similar form. The nonlinear (transformed) ordinary differential equations (ODE's) describing the self-similar form are generalizations of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE's are new, and it is postulated that they characterize GBE's in the same manner as the Painlev equations categorize the Kortweg-de Vries (KdV) type. A connection problem for some related ODE's satisfying proper asymptotic conditions at x=±[infinity], is solved. The range of amplitude parameter is found for which the solution of the connection problem exists. The other solutions of the above GBE, which display several interesting features such as peaking, breaking, and a long shelf on the left for negative values of the damping coefficient lambda, are also discussed. The results are compared with those holding for the modified KdV equation with damping. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a globally supersymmetric gauge theory with two distinct mass scales, the possible limitation on the gauge hierarchy due to the structure of the loop-corrected Higgs potential is shown to be absent. Also it has been demonstrated that the supersymmetry forces the large corrections to the two-point Greens functions of the light fields from the quadratic divergences and the logarithmic divergences with large coefficients to be zeroseparately. This would, therefore, allow a gauge hierarchy as large as desired.